Тепловой режим почвы – Влияние условий среды на рост, развитие, количество и качество урожая

0

Тепловой режим почвы – Влияние условий среды на рост, развитие, количество и качество урожая

Факторы, определяющие рост, развитие растений, урожай и его качество

Специальные термины растениеводства

Для того чтобы исключить различное понимание специальных терминов науки растениеводства, далее приведены пояснения некоторых из них.

Рост растений — увеличение размеров и массы растений.

Развитие растений — качественные изменения структуры и функций отдельных органов растения в онтогенезе, переход его из одного этапа органогенеза в другой, из одной фазы развития в другую.

Рост и развитие растений не всегда проходят синхронно. Например, культуры короткого дня при возделывании в северных широтах с низкой напряженностью температурного режима длительное время не могут набрать сумму активных температур для того, чтобы перейти в следующую фазу развития; в этом случае рост идет быстро, а развитие отстает.

Сорта сои северного экотипа, которым для прохождения онтогенеза необходима сумма активных температур всего 1800 *С, а за вегетативный период — лишь 600 °С, на юге России быстро набирают необходимую сумму, переходят в генеративный период, завершающийся созреванием семян. На ростовые процессы у них не хватает времени, растения остаются низкорослыми (20…30 см), с небольшим числом бобов и семян, хотя на территориях, расположенных на 55° с. ш., они достигают высоты 60…80 см и число бобов на растении превышает 30.

Онтогенез у однолетних культур — развитие растения от семени до семени, у многолетних — от прорастания семени до отмирания растения.

Вегетационный период у однолетних культур — период от посева семян до созревания, у многолетних — от весеннего пробуждения почек до осеннего прекращения роста вегетативных органов и перехода в состояние покоя.

Вегетативный период у однолетних культур — период от всходов до начала бутонизации, у многолетних — от начала весеннего отрастания до бутонизации.

Генеративный период — период от начала бутонизации до полной спелости семян.

При одинаковой продолжительности вегетационного периода у двух сортов одного вида семенная продуктивность выше у того сорта, у которого короче вегетативный и длиннее генеративный период. Вегетативная масса бывает больше у сорта с длинным вегетативным периодом.

Органогенез — последовательное образование и развитие отдельных органов растения в онтогенезе.

Фазы развития растений — условно выбранные периоды онтогенеза, в которые происходят наиболее важные физиологические и морфологические изменения в растении.

Условность фаз можно проиллюстрировать такими примерами: всходы зерновых мятликовых — это появление проростка над поверхностью почвы, однако фазу всходов принято отмечать, когда лопается колеоптиль, а высота листа достигает 3…5 см; фазу кущения отмечают при появлении над поверхностью почвы боковых побегов, хотя подземное ветвление начинается с ростовых процессов почек узла кущения; фазу выхода в трубку отмечают тогда, когда колос со сближенными междоузлиями находится во влагалище листа на высоте 5 см от почвы — так удобнее его прощупывать (фактически же выход в трубку совпадает с началом роста стебля, т. е. происходит на неделю раньше).

Фитоценоз (фито — растение, ценоз — сообщество) — растительное сообщество. Естественный фитоценоз — устойчивое многовидовое растительное сообщество. Агроценоз — одновидовое или многовидовое сообщество растений, искусственно создаваемое человеком (чаще всего это культуры, выращиваемые на пашне).

Урожай — продукция, полученная в результате выращивания сельскохозяйственных культур.

Урожайность — урожай сельскохозяйственной культуры с единицы площади посева. В одних и тех же условиях урожайность одного сорта бывает выше или ниже, чем другого.

Потенциальная урожайность — это наибольшая урожайность сорта, обусловленная генотипом, которая реализуется при удовлетворении всех требований биологии сорта.

Структура урожая — показатели компонентов, от которых зависит величина урожая. Например, при анализе структуры урожая зерновых культур учитывают густоту растений, продуктивную кустистость, число стеблей с колосом на 1 м2, число колосков и зерен в колосе, массу зерна с одного колоса, долю зерна в надземной биомассе (индекс урожая), биологический урожай зерна.

Биологический урожай — количество продукции, выращенной на единице площади. Хозяйственный урожай всегда меньше биологического урожая на величину потерь при уборке.

Норма удобрений — количество действующего вещества, используемое за год на 1 га.

Доза удобрений — часть нормы, применяемая за один прием. Например, норма азота под озимую пшеницу 150 кг/га, ее вносят в три приема: до посева в дозе 30 кг/га (для более дружных всходов и лучшего развития растений до наступления осенних холодов), весной после прекращения горизонтального и вертикального стока воды в дозе 90 кг/га (для активного нарастания вегетативной массы) и в фазе налива зерна в виде некорневой подкормки в дозе 30 кг/га (для повышения белковистости зерна).

Факторы внешней среды

На рост, развитие растений, урожай и его качество в той или иной степени влияет весь комплекс факторов внешней среды. При этом ни один фактор не может быть заменен другим, по своему физиологическому действию все они имеют равное значение для жизни растения. Например, недостаточная освещенность не может быть заменена повышенной температурой, избыток калия не компенсирует недостаток фосфора. Это закон физиологической равнозначности и незаменимости факторов.

Как следствие этого закона, рост, развитие растений, урожай и его качество ограничиваются фактором, находящимся в минимуме. Иногда это следствие интерпретируют как самостоятельный закон — закон минимума.

Из закона равнозначности и незаменимости факторов вытекает еще одно очень важное следствие — все физиологические процессы в растении будут идти активно, генотип может реализовать свою потенциальную продуктивность, если параметры каждого фактора среды будут оптимальными. Избыток каждого фактора так же вреден, как и его недостаток. Например, при избытке воды снижается аэрация почвы, и кислород становится ограничивающим фактором. Это следствие закона равнозначности и незаменимости факторов иногда формулируют как самостоятельный закон — закон оптимума.

Параметры некоторых из этих факторов человек пока не может регулировать, хотя они имеют очень важное, иногда решающее значение (табл. 3). Например, продолжительность безморозного периода ограничивает пределы вегетационного периода (как правило, чем дольше вегетационный период, тем выше продуктивность сорта).

При весенне-летнем возврате заморозков отодвигаются сроки посева культур короткодневного фотопериодизма, сокращается период их вегетации, а следовательно, снижается потенциальная урожайность. От напряженности инсоляции зависит скорость прохождения фаз развития: чем она выше, тем быстрее фазы развития сменяют одна другую. Это особенно существенно для теплолюбивых культур.

Статья по теме:   Сорт винограда Магарачский

Исключительно важное значение суммы активных температур как нерегулируемого фактора показано ранее. От суммы осадков и распределения их по периодам вегетации чаще всего зависят величина и качество урожая. Имеет значение и интенсивность осадков. Ливни вызывают большой поверхностный сток, сопровождаемый водной эрозией и слабым смачиванием почвы. Параметры всех этих факторов определяются географической зоной.

По показателям агроклиматических ресурсов сельское хозяйство в России менее обеспечено, чем в странах Западной Европы и Северной Америки (табл. 4). Это значит, что продуктивность 1 га пашни, которая зависит от времени аккумуляции солнечной энергии и влагообеспеченности, потенциально в России в 1,5…2,0 раза ниже, чем в странах Западной Европы и Северной Америки. Для получения одного и того же урожая культуры в нашей стране необходимы большие капиталовложения.

4. Агроклиматические условия растениеводства России и других регионов мира

Важные нерегулируемые факторы — зимние температуры воздуха, продолжительность периода, когда земля покрыта снегом, толщина снежного покрова. Из-за низких зимних температур в Восточной Сибири невозможно возделывать озимые культуры, а в малоснежные холодные зимы на юге Сибири происходит вымерзание озимых.

Холмистый рельеф затрудняет выбор возделываемой культуры и сорта. На южном склоне больше солнечной радиации, здесь предпочтительнее размещать теплолюбивые культуры, а на северном склоне — холодостойкие. Следовательно, на холмистой местности желательно иметь набор культур и сортов с различными требованиями к напряженности инсоляции.

Вторую группу факторов можно оценить как частично регулируемые. Это те факторы, которые в принципе можно регулировать, но их регулирование осуществляют на малой площади из-за большой энергоемкости или низкой эффективности приема. Например, влажность почвы можно регулировать с помощью орошения и осушения, но этот прием дорогостоящий, энергоемкий. На больших площадях сельскохозяйственных угодий культуры возделывают при естественной влагообеспеченности, урожай зависит от количества осадков и их распределения по периодам вегетации. Частично регулируемый фактор переходит в ранг нерегулируемого.

Влажность воздуха в фитоценозе возможно регулировать с помощью мелкокапельного орошения, однако этот дорогостоящий прием применяют на ничтожно малых площадях чайных и цитрусовых плантаций.

Водная и ветровая эрозия уносит вместе с почвой много питательных веществ, иногда полностью исчезает пахотный слой почвы. Борьбу с эрозией в той или иной мере ведут повсеместно, однако эрозионные процессы не приостанавливаются и систематическая потеря почвы и питательных веществ продолжается.

Важнейший показатель качества почвы — гумусированность. На небольших площадях с помощью внесения органических удобрений в высоких нормах можно повысить гумусированность почвы с 1,0…1,5 до 3…4 %. Но на всей площади посева это невозможно, в лучшем случае при внесении органики и использовании сидератов можно стабилизировать гумусовый режим почвы. Это же относится и к емкости поглощения ППК и микробиологической активности почвы — показателям, тесно связанным с гумусированностью.

Изменению реакции почвенного раствора уделяют существенное внимание. Судя по статистическим отчетам, все кислые почвы России произвесткованы уже дважды. Однако существенного изменения реакции почвенного раствора не произошло. Дело в том, что при внесении 1 т СаСО3 рНсол среднесуглинистой почвы сдвигается на 0,1 единицы. Для того чтобы изменить реакцию почвенного раствора с 4,5 до 5,5, нужно внести на 1 га около 10 т СаСО3, а для успешного возделывания бобовых культур рНсол почвы должен быть не ниже 6. С учетом влажности и содержания примесей в известковых материалах необходимо внести около 20 т доломитовой муки на 1 га. Фактически же норма известковых материалов составляла 2…4 т/га. При такой норме можно сдвинуть рНсол почвы на 0,2…0,4 единицы, но из-за применения азотных и хлорсодержащих калийных удобрений рН восстанавливается до исходного состояния. Для оптимизации почвенного раствора необходимы большие энергетические и финансовые затраты (энергосодержание 1 т СаСО3 составляет в среднем около 8,5 ГДж, а 1 т зерна пшеницы — около 18 ГДж).

Третья группа факторов — это те, которые человек может регулировать на больших площадях. Главная задача агронома заключается в том, чтобы с помощью регулируемых факторов свести к минимуму негативное влияние нерегулируемых и частично регулируемых факторов на рост, развитие растений, урожай и его качество. Для возделывания в условиях короткого вегетационного периода с низкой суммой активных температур подбирают культуры и сорта с соответствующими требованиями биологии. Чтобы избежать повреждения теплолюбивых растений от возврата весенне-летних заморозков, эти культуры высевают в более поздние сроки.

Недостаточное содержание элементов питания в почве восполняют с помощью применения органических и минеральных макро- и микроудобрений. Для снижения засоренности посевов, предупреждения заражения растений болезнями и повреждения вредителями используют агротехнические, химические и биологические методы борьбы с вредными организмами.

Влияние теплового режима на рост растений и эффективность удобрений

Температура является важнейшим фактором, определяющим возможности и сроки возделывания сельскохозяйственных культур.

Протекающие в почве биологические и химические процессы трансформации элементов питания находятся в прямой зависимости от температурного режима. Теплообеспеченность посевов характеризуется суммой среднесуточных температур воздуха выше 10°С за период вегетации. Как высокие, так и низкие температуры нарушают течение биохимических процессов в клетках, и тем самым могут взывать в них необратимые изменения, приводящие к прекращению роста и гибели растений. Повышение температуры до 25-28°С увеличивает активность фотосинтеза, а при дальнейшем ее росте начинает заметно преобладать дыхание над фотосинтезом, что приводит к снижению массы растений. Поэтому большинство сельскохозяйственных культур при температуре выше 30°С, растрачивая углеводы на дыхание не дают, как правило, прироста урожая. Снижение температуры окружающей среды с 25 до 10°С уменьшает интенсивность фотосинтеза и рост растений в 4-5 раз. Температура, при которой образование продуктов фотосинтеза равна их расходу на дыхание называется компенсационной точкой.

Наиболее высокая интенсивность фотосинтеза у растений умеренного климата наблюдается в интервале 24-26°С. Для большинства полевых сельскохозяйственных культур оптимальная температура днем составляет 25°С, ночью — 16-18°С. При повышении температуры до 35-40°С фотосинтез прекращается в результате нарушения биохимических процессов и чрезмерной транспирации (Кузнецов, Дмитриева, 2006). Существенное отклонение температуры от оптимальной в сторону повышения или понижения заметно снижает ферментативную активность в клетках растений, интенсивность фотосинтеза и поступление элементов питания в растения.

Статья по теме:   Цкобила – грузинский сорт винограда

Температура оказывает большое влияние на рост корней. Низкие ( 30°С) температуры почвы способствуют поверхностному расположению корней, существенно снижает их рост и активность. У большинства растений наиболее мощная разветвленная корневая система формируется при температуре почвы 20-25°С.

При определении срока внесения удобрений важно учитывать существенное влияние температуры почвы на поступление элементов питания в растения. Установлено, что при температуре ниже 12°С значительно ухудшается использование растениями фосфора, калия и микроэлементов из почвы и удобрений, а при температуре ниже 8°С заметно снижается также потребление минерального азота. Для большинства сельскохозяйственных культур температура 5-6°С является критической для поступления основных элементов питания в растения.

Теплообеспеченностью вегетационного периода в значительной мере обусловливается структура посевных площадей и возможность выращивания более продуктивных позднеспелых культур, которые продолжительное время могут использовать солнечную энергию на формирование урожая или проводить повторные посевы после раноубираемых культур.

В условиях Нечерноземной зоны России наблюдается прямая зависимость продуктивности сельскохозяйственных культур от суммы температур. В лесостепной и степной зонах, в орошаемых условиях какой-либо достоверной связи между количеством положительных температур и урожаями сельскохозяйственных культур не установлено. В центральных и южных регионах страны повышение или понижение температуры на 2-3 °С не оказывает существенное влияние на продуктивность растений.

Большое влияние оказывает также температура на жизнедеятельность почвенной микрофлоры, обусловливающей минеральное питание растений. Установлено, что наибольшая интенсивность аммонификации органических остатков в почве под действием микроорганизмов происходит при температуре 26-30°С и влажности почвы 70-80% от НВ. Отклонение температуры или влажности от оптимальных значений заметно снижает интенсивность микробиологических процессов в почве.

Большое влияние на интенсивность фотосинтеза и эффективность удобрений оказывает влагообеспеченность растений. От тургорного состояния растений зависит степень раскрытия устьиц, скорость поступления в листья СО2 и выделение О2. В условиях засухи и чрезмерной влажности устица обычно закрываются и ассимиляция углекислоты (фотосинтез) прекращается. Наиболее высокая интенсивность фотосинтеза наблюдается при небольшом дефиците воды в листе (10-15% от полного насыщения), когда устица максимально раскрыты. Только в условиях оптимального водного режима корневая система растений проявляет наиболее высокую активность потребления элементов питания из почвенного раствора. Дефицит влаги в почве приводит к снижению скорости передвижения воды и элементов питания по ксилеме к листьям, интенсивности фотосинтеза и уменьшению биомассы растений.

Важно не только количество осадков, но и динамика их распределения в течение вегетационного периода применительно к отдельным культурам. Продуктивность сельскохозяйственных культур в значительной мере обусловливается обеспеченностью влагой в наиболее ответственные фазы роста и развития растений.

Для Нечерноземной зоны установлена темная корреляционная связь между урожайностью и количеством осадков в конце мая — начале июня для зерновых, в июле — августе для картофеля, кукурузы, корнеплодов и овощных культур. Недостаток влаги в эти периоды значительно снижает урожай растений и эффективность удобрений.

Применение азотных и фосфорно-калийных удобрений значительно увеличивает дефицит влаги, поскольку пропорционально повышению урожайности надземной массы возрастает и водопотребление. Установлено, что на удобренных полях иссушающее действие растений на почву начинает проявляться раньше и на большую глубину, нежели на не удобренных. Поэтому при дефиците влаги удобренные поля засевают, как можно раньше, чтобы к моменту наступления засухи и иссушения верхнего слоя почвы корни достигли нижних более увлажненных горизонтов. Наиболее важным мероприятием влагонакопления в степных районах является снегозадержание, раннее боронование для закрытия влаги и ранний сев.

В лесостепной и сухостепной зоне влагообеспеченность является одним из важнейших факторов продуктивности сельскохозяйственных культур.

В зонах достаточного и избыточного увлажнения промывной водный режим оказывает большое влияние на обеспеченность растений элементами питания, поскольку с нисходящим током воды из корнеобитаемого слоя почвы выносятся значительное количество азота, кальция, магния и растворимых гумусовых веществ. Такой режим создается, как правило, осенью и ранней весной.

Большое влияние на урожайность сельскохозяйственных культур, эффективность удобрений, строки и агротехнические приемы полевых работ оказывает экспозиция и рельеф полей, поскольку склоны разной экспозиции и крутизны значительно отличаются содержанием в почве гумуса, элементов питания, тепловым и водным режимами и отзывчивостью сельскохозяйственных растений на удобрения. Почвы северных и северо-восточных склонов, как правило, более гумусированы, лучше обеспечены влагой, выше снежный покров, позже оттаивают по сравнению с южными склонами и, как правило, более тяжелого гранулометрического состава. Почвы южных и юго-западных склонов более теплые по сравнению с северными, раньше оттаивают, характеризуются интенсивным паводковым стоком талых и ливневых вод, отсюда, как правило, более эродированы, содержат меньше илистых частиц. В почвах южных склонах минерализация пожнивно-корневых остатков и органических удобрений протекает более интенсивно, поэтому они менее гумусированы. Чем выше снежный покров, тем меньше глубина промерзания почвы, она лучше впитывает весенние талые воды и паводки меньше разрушают почву.

Характеристика почв разной экспозиции важно учитывать при планировании сроков полевых работ и потребности в технике для несения удобрений, поскольку после завершения полевых работ на южных склонах ее используют на полях северной экспозиции.

Несмотря на большую зависимость роста и развития растений от их обеспеченности влагой и теплом, определяющая роль в формировании урожаев сельскохозяйственных культур в Нечерноземной зоне и многих других регионах принадлежит плодородию почвы и применению удобрений.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Тепловой режим

Нормальный рост и развитие овощных растений и формирование продуктивной части возможны лишь при определенной температуре. Основным источником тепловой энергии для растений является солнечная радиация, а также органические вещества, внесенные в почву навоз и компост, проходя различные стадии разложения, также выделяют тепловую энергию. Различные овощные растения неодинаково реагируют на температурный режим, что во многом зависит от их происхождения. Овощные растения и даже сорта одной и той же культуры по их отношению к теплу можно разделить на пять групп:

Статья по теме:   Повреждение виноградников морозами и обоснование зон неукрывной культуры

1. Морозо- и зимостойкие многолетние растения — щавель, ревень, хрен, спаржа, любисток, эстрагон, многолетние виды лука, чеснок. Растения этой группы в период вегетации способны весной и осенью переносить заморозки до -8—10 °С, а их подземные органы (корни, корневища) под покровом снега хорошо зимуют. Благодаря способности повышать концентрацию клеточного сока в зимующих почках в состоянии покоя зимостойкие культуры зимуют в открытом грунте с укрытием, морозостойкие выдерживают сильные морозы (-15— 35 °С) без укрытия.

У растений этой группы рост начинается при температуре 1 °С, но наиболее энергично идет при 15—20 °С.

2. Холодостойкие — двулетние капустные растения — корнеплоды, салат, овощной горох, бобы, укроп, шпинат, репчатый лук. Культуры данной группы могут длительное время переносить температуры -2—1 °С, а в течение нескольких суток выносят заморозки до -3—5 °С. Прорастание семян холодостойких культур начинается при 2—5 °С. Оптимальная же температура для начала интенсивной вегетации близка к 17—20 °С. Температура 20 °С является оптимальной для развития культур этой группы; при температуре выше 25—28 °С происходит заметное угнетение растения, при температуре выше 30 °С их рост прекращается. Это вызвано тем, что у холодостойких растений поступление органического вещества от ассимиляции становится равным расходу на дыхание при температуре 30—32 °С. Таким образом, у них не происходит накопления органических веществ, так как много энергии расходуется на дыхание.

Холодостойкие культуры приспособлены к таким условиям, когда температура почвы на 2—3 °С ниже температуры воздуха. При этом корневая система развивается лучше, повышается устойчивость растений к неблагоприятным условиям, вредителям и болезням.

Морозо-, зимо- и холодостойкие культуры образуют цветки и плоды лишь после прохождения яровизации — определенного периода пребывания в условиях пониженных температур (от 3 до -15 °С).

3. Умеренно холодостойкие — картофель. Ботва у него гибнет при 0 °С, как у требовательных к теплу культур, а рост и клубнеобразование лучше всего идут при температуре, близкой к оптимальной для холодостойких растений, что составляет 15—20 °С, при 10 °С рост заметно замедляется.

4. Теплолюбивые — помидоры, перец, баклажаны, тыква, фасоль, огурцы, кабачки, патиссоны — не переносят даже кратковременных заморозков. Оптимальная температура для них 20—30 °С. При температуре немного ниже 0 °С они погибают. Компенсационная точка для них близка к 40 °С. Требовательность теплолюбивых культур к теплу изменяется в отдельные периоды жизни. Теплолюбивые растения начинают прорастать при температуре 13—14 °С, но основная вегетация происходит при 25—30 °С. В начале роста эти растения выдерживают кратковременные похолодания до 12 °С, но при продолжительных низких температурах их корни медленнее усваивают питательные вещества из почвы, листья слабо ассимилируют углекислый газ, а при температуре б °С и ниже хлорофилл в клетках разрушается, растения бледнеют и желтеют, происходит серьезное угнетение роста. Понижение температуры во время плодоношения до 14 °С, особенно ночью, отрицательно сказывается на плодообразовании, так как плоды растут в основном в ночные часы, в это время в них идет усиленный отток органических веществ из листьев. Выращивание теплолюбивых растений в условиях средней полосы России требует применения особых агротехнических приемов. Теплолюбивые культуры чаще всего не вызревают из-за недостатка тепла в открытом грунте. Продолжительная холодная погода повреждает растения в большей степени, чем продолжительная засуха. Ночные похолодания летом и в начале осени резко сокращают вегетационный период теплолюбивых культур. В период плодоношения оптимальная температура 25—32 °С. Более высокая температура отрицательно сказывается на растениях, их могут поражать различные заболевания. Для улучшения теплового режима теплолюбивые культуры размещают на южной и юго-западной стороне участка, выращивают на гребнях, мульчируют пленкой, защищают кулисами из высокорослых растений или выращивают в защищенном грунте.

5. Жаростойкие растения — дыня, арбуз, кукуруза. Потребность в тепле у них примерно такая же, как и у теплолюбивых растений, но при 40 °С, а иногда и при более высокой температуре жаростойкие растения способны накапливать органическое вещество и развиваться без ущерба для самого растения и его плодов.

От температуры зависят жизненно важные процессы, протекающие в растениях: усвоение углекислого газа (фотосинтез), поступление воды, поглощение питательных веществ из почвы, дыхание, испарение воды (транспирация), передвижение питательных веществ от корней к листьям, почкам и плодам, а также пластических веществ от листьев к корням.

Потребность растений в тепле в различные фазы вегетации неодинакова.

В период роста и развития требования к условиям температуры у овощных растений изменяются. Во время набухания семян достаточной может быть низкая положительная температура воздуха, для прорастания необходима более высокая, а при появлении всходов — более низкая температура. Поэтому в защищенном грунте при повышенной температуре и недостатке света часто наблюдается вытягивание растений. В период цветения и плодоношения температура должна быть повышенной. Минимальная температура для прорастания холодостойких культур 1—5 °С, для теплолюбивых — от 14—15 до 16—17 °С. Повышение температуры до 25—30 °С ускоряет прорастание, что приводит к быстрому расходованию питательных веществ семени на ростовые процессы и на дыхание. Поэтому при выращивании рассады холодостойких культур в парниках и теплицах температуру снижают до 8—10 °С, для теплолюбивых — до 14—15 °С. В этих условиях корневая система продолжает развиваться, так как для ее роста температура почвы может быть на 3—4 С ниже, чем воздуха. Спустя 5—7 дней температуру постепенно повышают до 15—20 °С для холодостойких и до 20—24 °С для теплолюбивых культур. Высокая температура при выращивании рассады вызывает усиленный расход питательных веществ на дыхание, в то время как приток их за счет ассимиляции при очень малом размере семядолей и слабом развитии корней ограничен. Пониженная температура задерживает рост подземной части, предупреждает вытягивание

Оптимальные и критические температуры для различных видов овощных культур, °С

Источники:

http://nomnoms.info/faktory-opredelyayuschie-rost-razvitie-rasteniy-urozhay-i-ego-kachestvo/
http://www.activestudy.info/vliyanie-teplovogo-rezhima-na-rost-rastenij-i-effektivnost-udobrenij/
http://medn.ru/rasteniy/ovoshhnye-rasteniya/teplovojrezhim/

Добавить комментарий