Стабильность и флокуляция гидрофобных коллоидов – Коллоидные явления в винах

0

Стабильность и флокуляция гидрофобных коллоидов – Коллоидные явления в винах

Коагуляция гидрофобных коллоидов

Едва ли существуют какие-либо внешние воздействия, которые при достаточной интенсивности не вызывали бы коагуляции. Действие теплоты и холода, электромагнитных полей, жестких излучений, механические воздействия, химические агенты приводят к нарушению агрегативной устойчивости и, следовательно, к коагуляции. Это происходит в результате разрушения энергетического барьера, и метастабильная система самопроизвольно переходит в более термодинамически устойчивое состояние в процессе коагуляции.

Поскольку частицы дисперсной фазы одинакового состава заряжены одноименно, легко себе представить, что электростатически они должны отталкиваться. Поэтому все без исключения сильные электролиты вызывают коагуляцию при увеличении концентрации их в растворе до некоторого (различного для разных электролитов) критического значения (Ск), называемого порогом коагуляции (или коагулирующей концентрацией). Очевидно, что Ск сильно различается для отдельных электролитов. При этом многочисленные исследования на гидрофобных коллоидах показали, что коагулирующей частью электролита является один из его ионов. Порог коагуляции тем меньше, чем выше валентность коагулирующего иона, а сам коагулирующий ион всегда несет заряд, противоположный заряду коллоидной частицы. Коагуляция наступает в тот момент, когда заряд частицы становится равным нулю, т.е. в изоэлектрической точке.

Установленные закономерности подтвердили представление о решающей роли структуры частицы в процессе коагуляции и нашли свое выражение в правиле Шульце – Гарди, которое сегодня звучит следующим образом: коагулирующее действие оказывает противоион, и коагулирующая способность возрастает пропорционально некоторой степени его заряда.

При действии многозарядных ионов часто наблюдается интересное явление, получившее название зон коагуляции. Оно заключается в появлении – с ростом концентрации электролита – второй зоны устойчивости после зоны коагуляции. В этой второй зоне заряд частиц оказывается противоположным по знаку начальному заряду. С дальнейшим ростом концентрации при некотором новом критическом значении Ск′ наступает вторая зона коагуляции. Это явление хотя и подтверждает представление об электрической природе сил отталкивания между дисперсными частицами, однако указывает на сложный механизм коагулирующего действия электролитов. Действительно, можно видеть, что частица в целом, вместе со своим двойным электрическим слоем (ДЭС), строго электронейтральна в состоянии равновесия с окружающей средой. В этом случае на некоторый пробный заряд, находящийся за пределами двойного электрического слоя, никакая сила со стороны частицы не действует, поскольку все лишние поля, идущие от поверхностного заряда, экранированы противоионами. Однако при введении этого пробного заряда в диффузный слой поле поверхностного заряда экранировано не полностью и должно смещать пробный заряд к периферии, если его знак совпадает со знаком ядра частицы.

Такое же «выталкивающее» действие электрического поля должно возникать при вхождении частицы в зону ДЭС другой одноименно заряженной частицы. Если частицы сближаются так, что диффузные слои перекрываются, происходит удаление части объемного заряда противоионов в зоне контакта (вместе с ним – частичное снижение заряда поверхности), и взаимодействие двух одноименных полей вызывает взаимное отталкивание частиц. Таким образом, в рамках качественного рассмотрения силы отталкивания возникают при деформации диффузного слоя, и для сближения частицам надо преодолеть барьер тем более высокий, чем выше потенциал, и тем дальше отстоящий от поверхности, чем больше толщина диффузного слоя. С ростом концентрации электролита уменьшаются значение потенциала и толщина диффузного слоя, и при С=Скр высота барьера снижается до величины, сравнимой с величиной кинетической энергии частиц. В результате появляется возможность его преодоления, и частицы могут сблизиться до весьма малого расстояния, где силы притяжения достаточны для осуществления элементарного акта коагуляции.

Эти представления лежат в основе современной теории устойчивости гидрофобных коллоидов, развитой первоначально Дерягиным совместно с Ландау, а позднее Фервеем и Овербеком и получившей название теории ДЛФО. В классическом варианте теория рассматривает процесс коагуляции как результат совместного действия сил притяжения (сил Лондона – Ван-дер-Ваальса) и электростатических сил отталкивания между частицами. В зависимости от баланса этих сил в тонкой прослойке жидкости между сближающимися телами возникает либо положительное расклинивающее давление, препятствующее их соединению, либо отрицательное, приводящее к утончению прослойки и образованию контакта между частицами и, следовательно, к коагуляции. Укажем, что теория ДЛФО, устанавливающая связь между свойствами двойного электрического слоя и устойчивостью дисперсных систем, лежит в основе всех современных работ в области коллоидной химии. Тем не менее она находится в постоянном развитии, что связано с чрезвычайной сложностью и большим многообразием процессов коагуляции.

3.3. адсорбционно-сольватный барьер
как фактор стабилизации коллоидных систем

С большой долей вероятности можно утверждать, что даже в случае типично гидрофобных коллоидов (например, золей металлов) нет систем, в которых бы полностью отсутствовало взаимодействие между веществами дисперсной фазы и дисперсионной среды. Это взаимодействие приводит к образованию на поверхности частицы сольватного слоя жидкости с измененными свойствами. Этот слой (слои) обладает свойствами, характерными для квазитвердых тел: высокой вязкостью, упругостью, сопротивлением сдвигу, что препятствует взаимопроникновению слоев при сближении частиц. Очевидны термодинамические причины формирования сольватной оболочки, заключающиеся в наличии избыточной поверхностной энергии частиц с молекулами растворителя. Для потери коллоидной системой ее агрегативной устойчивости необходимо сближение частиц до определенных расстояний. С учетом особых свойств сольватных слоев это может быть достигнуто либо путем затраты работы на преодоление упругих сил (структурная составляющая), либо путем затраты работы на частичную десорбцию молекул сольватной оболочки, ведущую к уменьшению зазора между частицами (адсорбционная составляющая). Понятно, что чем более развита и прочна сольватная оболочка, тем большей потенциальной энергией должны обладать коллоидные частицы для преодоления адсорбционно-сольватного барьера, и тем устойчивее будут коллоидные системы. Отметим, что с ростом лиофильности коллоидных систем вклад в их агрегативную устойчивость адсорбционно-сольватационной составляющей повышается, приводя к значительному увеличению пороговой концентрации электролитов, необходимой для начала процесса коагуляции. Известно, что многие золи, например гидроксиды Al, Si, Fe, Mn, характеризуются большим развитием и прочностью гидратных оболочек и их коагуляция происходит с образованием рыхлых структурированных агрегатов.

Статья по теме:   Сорта винограда для приготовления соков белых столовых вин - Характеристика исходного материала, используемого в селекции винограда

Еще большого развития достигают сольватные слои в результате адсорбции длинноцепочечных поверхностно – активных веществ (ПАВ) и в особенности высокомолекулярных соединений (ВМС). Большие размеры молекул, несущих собственные сольватные оболочки, создают на поверхности частиц адсорбционно-сольватные слои большой протяженности и плотности. Устойчивость таких дисперсий близка к устойчивости истинно лиофильных систем. Способность ВМС к образованию адсорбционно-сольватных слоев на поверхности частиц называют защитным действием и широко используют в практике. Например, коллоидные частицы кварца или металла, защищенного слоем белка, устойчивы и по своему поведению не отличаются от макромолекул белка. Вещество дисперсной фазы скрыто оболочкой, и частицы различного химического состава, защищенные одинаковыми оболочками, не различаются между собой по поверхностным свойствам.

Дата добавления: 2018-02-28 ; просмотров: 130 ; ЗАКАЗАТЬ РАБОТУ

Коагуляция гидрофобных (лиофобных) коллоидов

Чтобы вызвать коагуляцию гидрофобных коллоидов, к ним необходимо прибавить незначительное количество разбавленного раствора электролита. Это является отличительным признаком лиофобных коллоидов от лиофильных, для которых, как уже бы­ло сказано, необходимо прибавление концентрированного рас­твора электролита

Прибавление электролита снижает величину электрокине­тического потенциала. Та величина ζ – потенциала, при которой наступает коагуляция, называется критической, а та минимальная концентрация электролита, которая вызвала коагуляцию, называется порогом коагуляции. Величина, обратная порогу коагуляцииэлектролита, вызвавшего коагуляцию, характеризует коагулирующую силу ионов этого электролита.

Было установлено, что коагуляцию гидрофобных (лиофобных) коллоидов вызывают ионы, противоположно заряженнные по отношению к заряду коллоидных частиц, и коагулирующая сила ионов тем больше, чем выше валентность этих ионов. Это правило получило название “правило значности и валентности” или правило Шульце-Гарди.

Действие иона-коагулятора на коллоидную систему зависит не только от знака заряда, но также от валентности и химической природы этого иона.

Различные ионы с одинаковой валентностью и одним и тем же знаком заряда оказывают различное по силе коагулирующее действие на одну и ту же коллоидную систему. Разница в дейст­вии этих ионов зависит от различной способности этих ионов адсорбироваться коллоидными частицами. Так, например, катио­ны натрия и серебра имеют одну и ту же валентность и один и тот же знак заряда, но ион серебра действует на коллоидные сис­темы значительно сильнее иона натрия, так как он быстрее и полнее адсорбируется коллоидными частицами. Тоже относится и к анионам. Так, например, если сравнивать коагулирующее действие аниона салициловой кислоты и аниона хлора, то анион салициловой кислоты всегда значительно сильнее и быстрее ад­сорбируется, например, белковыми коллоидными частицами. В связи с этим, и коагулирующее действие его будет сильнее, чем у аниона хлора.

Коагулирующая сила иона в зависимости от валентности, увеличивается в таком отношении: если принять коагулирующую силу одновалентных ионов за единицу, то коагулирующая сила двухвалентных ионов будет в десятки, а трехвалентных – в сотни раз больше ( 1 : 20 : 200 ).

Этому правилу не подчиняются ионы Н + и ОН – , коагулирующая сила которых равна или даже превышает коагулирующую силу двухвалентных ионов.

Возрастание коагулирующей силы с повышением валентности ионов объясняется двумя причинами: во-первых, более резким снижением ζ- потенциала многовалентными ионами и, во-вторых, более высокой адсорбционной способностью этих ионов, играющих роль противоионов в мицелле. Ионы, расположенные в порядке возрастания их коагулирующей силы, образуют лиотропный ряд:

Механизм коагуляции электролитами состоит в следующем. Коллоидные мицеллы имеют определенный заряд, который характеризуется величиной электрокинетического потенциала. Для устойчивых золей он находится в пределах 30-70 мВ. После добавления электролита величина этого потенциала начинает уменьшаться и даже может дойти до нуля. Это понижение потенциала объясняется действием ионов добавленного электролита, противоположно заряженных коллоидной частицы, которые ад­сорбируются поверхностью частицы, тем самым уменьшая ее заряд.

Для нейтрализации зарядов частиц требуется определенное время (скрытая и явная коагуляция) и определенное количество электролита (порог коагуляции). Однако, для коагуляции коллоидной системы не нужно вызывать полную нейтрализацию зарядов частиц. Коагуляция наступает значительно раньше, что можно объяснить следующим образом: коллоидные частицы находятся в непрерывном хаотическом движении, которое затрудняет их сближение. Соединение частиц между собой может наступить только в тех случаях, когда сила притяжения (сила межмолекулярного взаимодействия) будет больше, чем сила отталкивания (сила электростатического взаимодействия). Силы электростатического отталкивания естественно уменьшаются с уменьшением заряда коллоидных частиц.

Статья по теме:   Сорт винограда Сурученский белый

Соединение частиц между собой наступает только при определенном расстоянии между ними. Вычислено, что минимальное расстояние между частицами, при котором происходит соединение, приблизительно, в 2-3 раза больше радиуса самих частиц.

Электрокинетический потенциал, при котором силы притяжения и силы отталкивания между коллоидными частицами равны, называется критическим потенциалом, величина которого колеблется в пределах 20-30 мВ. В этот момент и может начаться процесс коагуляции.

Многочисленными исследованиями было установлено, что растворы ВМС, прибавленные к гидрофобным золям, сообщают им повышенную устойчивость к электролитам. Подобное явление получило название защитного действия, а сами вещества, повышающие устойчивость гидрофобных золей – защитных. Так, например, прибавление даже небольшого количества раствора желатина в золь мастики или серы повышает агрегативную устойчивость этих золей при действии электролита.

Степень защитного действия растворов ВМС зависит как от природы растворенного полимера, так и от природы защищаемого гидрофобного золя. В качестве количественной меры защитного действия растворов ВМС применяют золотое, рубиновое и железное число. Например, под железным числом подразумевают минимальное число миллиграммов защищающего полимера, способного защитить 10 мл гидрозоля железа от коагулирующего действия 1 мл 0,005 н раствора сульфата натрия.

Коагуляция гидрофобных (лиофобных) коллоидов.

Чтобы вызвать коагуляцию гидрофобных коллоидов, к ним необходимо прибавить незначительное количество разбавленного раствора электролита. Это является отличительным признаком лиофобных коллоидов от лиофильных, для которых, как уже бы­ло сказано, необходимо прибавление концентрированного рас­твора электролита

Прибавление электролита снижает величину электрокине­тического потенциала. Та величина ζ – потенциала, при которой наступает коагуляция, называется критической, а та минимальная концентрация электролита, которая вызвала коагуляцию, называется порогом коагуляции. Величина, обратная порогу коагуляцииэлектролита, вызвавшего коагуляцию, характеризует коагулирующую силу ионов этого электролита.

Было установлено, что коагуляцию гидрофобных (лиофобных) коллоидов вызывают ионы, противоположно заряженнные по отношению к заряду коллоидных частиц, и коагулирующая сила ионов тем больше, чем выше валентность этих ионов. Это правило получило название “правило значности и валентности” или правило Шульце-Гарди.

Действие иона-коагулятора на коллоидную систему зависит не только от знака заряда, но также от валентности и химической природы этого иона.

Различные ионы с одинаковой валентностью и одним и тем же знаком заряда оказывают различное по силе коагулирующее действие на одну и ту же коллоидную систему. Разница в дейст­вии этих ионов зависит от различной способности этих ионов адсорбироваться коллоидными частицами. Так, например, катио­ны натрия и серебра имеют одну и ту же валентность и один и тот же знак заряда, но ион серебра действует на коллоидные сис­темы значительно сильнее иона натрия, так как он быстрее и полнее адсорбируется коллоидными частицами. Тоже относится и к анионам. Так, например, если сравнивать коагулирующее действие аниона салициловой кислоты и аниона хлора, то анион салициловой кислоты всегда значительно сильнее и быстрее ад­сорбируется, например, белковыми коллоидными частицами. В связи с этим, и коагулирующее действие его будет сильнее, чем у аниона хлора.

Коагулирующая сила иона в зависимости от валентности, увеличивается в таком отношении: если принять коагулирующую силу одновалентных ионов за единицу, то коагулирующая сила двухвалентных ионов будет в десятки, а трехвалентных – в сотни раз больше ( 1 : 20 : 200 ).

Этому правилу не подчиняются ионы Н + и ОН – , коагулирующая сила которых равна или даже превышает коагулирующую силу двухвалентных ионов.

Возрастание коагулирующей силы с повышением валентности ионов объясняется двумя причинами: во-первых, более резким снижением ζ- потенциала многовалентными ионами и, во-вторых, более высокой адсорбционной способностью этих ионов, играющих роль противоионов в мицелле. Ионы, расположенные в порядке возрастания их коагулирующей силы, образуют лиотропный ряд:

Механизм коагуляции электролитами состоит в следующем. Коллоидные мицеллы имеют определенный заряд, который характеризуется величиной электрокинетического потенциала. Для устойчивых золей он находится в пределах 30-70 мВ. После добавления электролита величина этого потенциала начинает уменьшаться и даже может дойти до нуля. Это понижение потенциала объясняется действием ионов добавленного электролита, противоположно заряженных коллоидной частицы, которые ад­сорбируются поверхностью частицы, тем самым уменьшая ее заряд.

Для нейтрализации зарядов частиц требуется определенное время (скрытая и явная коагуляция) и определенное количество электролита (порог коагуляции). Однако, для коагуляции коллоидной системы не нужно вызывать полную нейтрализацию зарядов частиц. Коагуляция наступает значительно раньше, что можно объяснить следующим образом: коллоидные частицы находятся в непрерывном хаотическом движении, которое затрудняет их сближение. Соединение частиц между собой может наступить только в тех случаях, когда сила притяжения (сила межмолекулярного взаимодействия) будет больше, чем сила отталкивания (сила электростатического взаимодействия). Силы электростатического отталкивания естественно уменьшаются с уменьшением заряда коллоидных частиц.

Соединение частиц между собой наступает только при определенном расстоянии между ними. Вычислено, что минимальное расстояние между частицами, при котором происходит соединение, приблизительно, в 2-3 раза больше радиуса самих частиц.

Электрокинетический потенциал, при котором силы притяжения и силы отталкивания между коллоидными частицами равны, называется критическим потенциалом, величина которого колеблется в пределах 20-30 мВ. В этот момент и может начаться процесс коагуляции.

Многочисленными исследованиями было установлено, что растворы ВМС, прибавленные к гидрофобным золям, сообщают им повышенную устойчивость к электролитам. Подобное явление получило название защитного действия, а сами вещества, повышающие устойчивость гидрофобных золей – защитных. Так, например, прибавление даже небольшого количества раствора желатина в золь мастики или серы повышает агрегативную устойчивость этих золей при действии электролита.

Статья по теме:   Морозо- и зимостойкость древесных растений

Степень защитного действия растворов ВМС зависит как от природы растворенного полимера, так и от природы защищаемого гидрофобного золя. В качестве количественной меры защитного действия растворов ВМС применяют золотое, рубиновое и железное число. Например, под железным числом подразумевают минимальное число миллиграммов защищающего полимера, способного защитить 10 мл гидрозоля железа от коагулирующего действия 1 мл 0,005 н раствора сульфата натрия.

Пептизация коллоидов.

Процесс пептизации является процессом, обратным коагуляции – это процесс растворения коллоидного осадка (геля) и образование вновь коллоидного раствора (золя).

Процессу пептизации подвергаются не все коллоидные осадки, а только те, которые содержат в себе большое количество растворителя и коллоидные частицы которых еще сохраняют некоторые индивидуальные свойства. У лиофильных коллоидов устранение фактора, вызвавшего коагуляцию, вызывает переход образовавшегося геля вновь в состояние золя. Так, добавление воды в коагель, который был образован от добавления этилового спирта в гидрозоль желатина, вновь переводит этот гель в состояние золя. Такие коллоиды называются обратимыми.

Коагель, образованный в результате коагуляции лиофобного золя, разбавлением раствора, вызвавшего коагуляцию, перевести в состояние золя невозможно. Такие коллоиды называются необратимыми.

И все-таки гидрофобные коллоиды способны к пептизации. При пептизации лиофобных коллоидов основным процессом является восстановление зарядов на коллоидной частицах, утраченных в процессе коагуляции. Осуществить процесс пептизации может тот ион, который способен адсорбироваться на поверхности частицы и сообщить ей заряд. При пептизации происходит химическое взаимодействие между прибавляемым пептизатором (электролитом) и пептизируемым коллоидом. В качестве примера пептизации гидрофобного золя можно привести пептизацию коагулята гидроокиси железа добавлением очень малых количеств хлорного железа. При этом происходит адсорбция ионов железа поверхностью частиц геля. Другим примером пептизации является очищающее действие мыльных растворов.

Коагуляция лиофильных (гидрофильных) коллоидов.

К классу лиофильных коллоидов относятся растворы высо­комолекулярных соединений. Растворы ВМС аналогично истинным растворам обладают абсолютной агрегативной устойчивостью. Высокая устойчивость растворов ВМС определяется наличием на поверхности частиц двух оболочек – электрической и сольватной (гидратной). Поэтому для коагуляции растворов ВМС необходимо не только нейтрализовать заряд коллоидной частицы, но и разрушить жидкостную оболочку. Выделение ВМС из растворов по своей природе отличается от коагуляции типичных гидрофобных золей. Так, если для гидрофобных золей достаточно незначительных добавок электролитов, чтобы вызвать их коагуляцию, то для ВМС этого недостаточно. Для выделения дисперсной фазы полимеров необходимы высокие, вплотьдо насыщенных, концентрации электролитов. Явление выделения в осадок растворенного ВМС под действием большой концентрации электролита получило название высаливание.

Всякое вещество, способное сольватироваться растворителем ВМС и понижать его растворимость, пригодно для высаливания. Так, например, спирт и ацетон способны отлично высаливать желатину из ее водных растворов. Аналогично происходит осаждение спиртом белка из водного раствора или осаждение ацетоном каучука из раствора бензола.

Коагуляция лиофильных коллоидов достигается прибавлением к золю десольватирующих веществ. Такими десольватирующими веществами являются спирт, ацетон, пересыщенные растворы электролитов, т.е. такие вещества, которые, не изменяя самих частиц, отнимают воду у этих частиц. При коагуляции гидрофильных коллоидов под действием пересыщенных растворов электролитов имеет важнейшее значение гидратация самих ионов: чем менее гидратирован сам ион, тем выше его коагулирующая сила. При высаливании (коагуляции ВМС) решающую роль играет не валентность иона, а его способность к гидратации и к адсорбции на коллоидно-дисперсных частицах.

Как отмечалось выше, коагуляция лиофильных коллоидов носит обратимый характер.

Вопросы для самоконтроля:

1. В каком месте коллоидной мицеллы возникают полный и электрокинетический потенциалы?

2. Явление электрофореза и электроосмоса.

3. Что такое коагуляция коллоидных систем?

4. Правило Шульце-Гарди.

5. Чем можно вызвать коагуляцию гидрофобных коллоидов?

6. Как по коагуляции можно отличить гидрофобный коллоид от растворов ВМС?

7. Механизм коагуляции гидрофобных коллоидов.

8. Механизм высаливания растворов ВМС.

Экспериментальная часть:

Задание 1. Коагуляция гидрофобных коллоидов. Определение порога коагуляции и вычисление коагулирующей силы.

Коагуляцию гидрофобных золей осуществляют действием следующих растворов: КС1, K2SO4, СаС12 (все растворы 1 М).

Изучая коагулирующее действие указанных растворов, необходимо определить пороги коагуляции коллоидов этими электролитами. Чем меньше порог коагуляции, тем больше коагулирующая сила иона, вызвавшего коагуляцию данного коллоида (по правилу значности и валентности).

В пробирки, установленные в штативе (кроме двух), наливают по 1 мл испытуемого золя (по заданию преподавателя). Готовят контрольный раствор: в первую пробирку с 1 мл испытуемого золя добавляют 1мл дистиллированной воды. Пипеткой берут из колбы с 1 М раствором КС1 1 мл и добавляют в следую пробирку с гидрозолем. Сравнивая содержимое этой пробирки с контрольным раствором, убеждаются в том, что хлористый калий такой концентрации вызывает коагуляцию коллоида. Отмечают в таблице 23 наличие коагуляции знаком «+» и приступают к разбавлению раствора КС1.

Результаты определения порога коагуляции гидрофобных золй.

Источники:

http://studopedia.net/2_31540_koagulyatsiya-gidrofobnih-kolloidov.html
http://studopedia.ru/7_13319_koagulyatsiya-gidrofobnih-liofobnih-kolloidov.html
http://lektsia.com/2×4676.html

Добавить комментарий