Состав сахаров винограда — Химический состав винограда, сусла и вина

Химический состав винограда и сусла для производства шампанских виноматериалов

Химический состав винограда и сусла для производства шампанских виноматериалов.

В осуществлении биохимических и химических процессов при изготовлении шампанских вин принимает участие большое количество веществ. Среди них: белки, аминокислоты, углеводы, органические кислоты (винная, яблочная, янтарная, фумаровая, диоксифумаровая, гликолевая, глиоксалевая, щавелевая, глюконовая и др.), ферменты, витамины, дубильные и красящие вещества, эфирные масла, минеральные вещества и др.

Белки и аминокислоты осуществляют функции обмена веществ, который лежит в основе жизнедеятельности дрожжей при производстве шампанских вин. По своей химической структуре белковые вещества относятся к высокомолекулярным соединениям, образующим в воде молекулярные растворы. Молекулярная масса низкомолекулярных белков выражается несколькими тысячами, а высокомолекулярных – несколькими миллионами. При определенных условиях белки дают прозрачные растворы – золи, способные легко загустеть и перейти в состояние вяжущего геля. Этот переход из золя в гель и назад имеет определенное физиологическое значение в жизнедеятельности микроорганизмов.

При нагревании белковых растворов (и других действий) белки денатурируют, что сопровождается снижением растворимости белка, его свертыванием и коагуляцией с выпадением в осадок.

На растворимости белков основана их классификация: глобулины, проламины, глютамины. Молекулы этих белков представляют собой длинные полипептидные цепи, образованные разными аминокислотами, входящими в состав белков (известно более 20 аминокислот).

Большое теоретическое и практическое значение в биотехнологии шампанских вин имеет биосинтез белка, в основе которого лежит образование полипептидной цепи аминокислот, соединенных с помощью пептидной связи. При ферментативном гидролизе (при определенных условиях) белки распадаются до пептидов, которые при глубоком гидролизе расщепляются на отдельные аминокислоты. Порядок построения белка из аминокислот определяют нуклеиновые кислоты (информационная рибонуклеиновая кислота). Биосинтез белка происходит в рибосомах. Доставка аминокислот, составляющих белки, в рибосомы происходит при помощи транспортной рибонуклеиновой кислоты.

Аминокислотный состав белков винограда сорта Рислинг насчитывает 18 аминокислот: лизин, аспарагиновая кислота, треонин, серин, пролин, глицин, валин, цистин, аргинин, лейцин и др. Из них в винограде преобладают лизин и аспарагиновая кислота.

В растворимых белках винограда сорта Рислинг в результате их гидролиза, кроме аминокислот, находятся фруктоза, глюкоза, галактоза, манноза, ксилоза, рамноза и другие углеводы.

Виноградное сусло для шампанских вин, кроме белков, содержит такие продукты их гидролиза как, аминокислоты, пептоны, пептиды, амиды, аммиак и др.

Увеличение количества азотистых веществ в процессе созревания винограда для шампанских вин характеризуется такими показателями:

· максимум содержания азотистых веществ достигается в период физиологической зрелости;

· количество общего и белкового азота в ягодах винограда возрастает, а в листьях, гребнях и семенах падает;

· во время сбора винограда содержание азотистых веществ стабилизируется или в незначительном количестве уменьшается.

В целом, согласно данным Преображенского А. А., содержание общего белкового и аминного азота в процессе вызревания винограда заметно увеличивается, а аммиачного – уменьшается. В конце созревания винограда количество общего азота в 4. 5 раз больше, чем вначале созревания, в основном, благодаря росту содержания полипептидов и белков.

Установлено, что на ранней стадии созревания винограда сок ягоды содержит мало аминокислот. В процессе созревания количество аминокислот сильно увеличивается. В начале созревания винограда в соке находятся аргинин, серин, треонин и пролин, а также аспарагиновая и глютаминовая кислоты. Идентифицированы в винограде на разных фазах созревания аргинин, глютаминовая кислота, гликокол, лейцин, пролин, серин, валин и др.

В целом, азотистые вещества представлены в винограде разнообразными соединениями, количество которых значительно колеблется в зависимости от сорта винограда, почвы и климатических условий. Применение отдельных элементов удобрений непосредственно влияет на содержание аминокислот и других веществ в винограде. Показано, что с помощью удобрений можно регулировать питание виноградной лозы и получать виноград для переработки на определенные типы вин (например, для шампанских виноматериалов). Шампанские виноматериалы высокого качества можно получить при выращивании винограда на перегнойно-карбонатных грунтах.

Общее количество азота в ягодах винограда колеблется от 0,06 до 0,24 %. Содержание аминного азота в сусле в перерасчете на аспарагиновую кислоту составляет от 1,6 до 10 г/дм3, в среднем до 5 г/дм3. На долю аминного азота из общего количества азота приходится от 150 до 500 мг/дм3 и больше. Количество аммиачного азота составляет от 25 до 120 мг/дм3, амидного – от 15 до 35 мг/дм3, белкового – от 10 до 50 мг/дм3.

Кроме белков, важной составной частью винограда и сусла являются углеводы: моносахариды (монозы), олигосахариды (при гидролизе распадаются на две или больше молекул моносахаридов) и полисахариды (полиозы).

В зеленых листьях виноградной лозы углеводы образуются благодаря химической энергии, полученной при фотохимических реакциях (фотосинтез).

В процессе фотосинтеза диоксид углерода (СО2) и вода превращаются в углеводы и в молекулярный кислород, который выделяется из воды. Сам процесс фотосинтеза состоит в переходе лучевой энергии солнца в химическую, в результате которой создаются сложные химические соединения.

К фотосинтезу относятся не только ассимиляция диоксида углерода, но и синтез клеточных веществ растения за счет химической энергии, образующейся при фотохимических реакциях. Первым продуктом биохимических преобразований являются триозы, из которых потом образуются углеводы, белки и жиры. Академик Блажев (ректор Словацкого политехнического института) впервые в мире разработал способ управления фотосинтезом с целью получения веществ, необходимых для определения биотехнологии.

В ягодах винограда находятся разные углеводы, начиная от простых сахаров и заканчивая сложными полисахаридами (целлюлоза и гемицеллюлоза). Характерно для винограда большое содержание таких растворимых сахаров, как фруктоза и глюкоза. В винных сортах винограда этих моносахаридов в период вызревания накапливается до 24 %, а в некоторых случаях до 30 % (в зависимости от климатических условий, сорта и почв). В процессе вызревания винограда под действием фермента изомеразы часть глюкозы превращается в фруктозу, тем самым ее содержание увеличивается. Для установления степени зрелости винограда, идущего на переработку при производстве шампанского, большое значение имеет содержание сахаров в ягодах и их кислотность. Отношение количества сахаров к общей кислотности, выраженной в граммах на дм3, называется глюкоацидометрическим показателем, являющимся индексом созревания. Он и определяет момент сбора урожая винограда для получения разных типов вин. Для шампанских сортов винограда этот показатель равен 18. 20.

Органические кислоты образуются не только при окислительном распаде углеводов, но и при фотосинтезе в зеленых листьях, откуда эти кислоты перемещаются к ягодам винограда. Ягоды содержат большое количество винной и яблочной кислоты и очень мало щавелевой, лимонной и янтарной. При физиологической зрелости винограда значительно уменьшается количество винной, яблочной, янтарной и щавелевой кислот. Количество винной кислоты в процессе созревания винограда постоянно снижается, в среднем, с 14 до 4, а яблочной – с 16 до 2 г/кг винограда. При этом количество лимонной, янтарной, щавелевой и пировиноградной кислоты незначительно уменьшается. Исходя из этого, можно по динамике одной из кислот определить техническую и физиологическую зрелость винограда и, на основании этого, сделать правильную оценку биологических свойств шампанских сортов винограда.

Статья по теме:   Подлесный - сорт винограда

Многими исследователями доказано, что виноградное сусло из южных винодельческих районов всегда богаче на винную кислоту и беднее на яблочную, чем из северных. Если год урожая винограда не очень теплый, то в винограде синтезируется больше винной кислоты, чем яблочной. В дальнейшем из такого винограда получается высококислотное сусло, которое имеет большой процент винной кислоты.

Доказано, что в зеленых ягодах при низких температурах 10. 15 оС (например, ночью) происходит синтез органических кислот, а при высоких температурах (30. 40 оС) – синтез углеводов.

Винная кислота. Луи Пастер впервые показал, что винная кислота существует в таких четырех формах:

— правовращающая D-винная кислота;

— левовращающая L-винная кислота;

— рацемическая (смесь эквимолекулярных количеств правовращающих и левовращающих стереоизомеров);

В виноградной лозе преобладает D-винная кислота, в листьях присутствует в больших количествах L-винная кислота (до 3,7 % на сухую массу). В зрелом винограде количество винной кислоты колеблется от 0,2 до 1 %.

Роль винной кислоты в винограде очень большая: она принимает участие в процессах дыхания, ассимиляции, а также подвергается разным преобразованиям. В винограде винная кислота окисляется через диоксифумаровую до глиоксалевой кислоты, которая, в дальнейшем, может принимать участие в синтетических процессах.

Винная кислота может превращаться в углеводы, если она окислится в диоксифумаровую кислоту, а потом декарбоксилируется до гликолевого альдегида с более высоким уровнем восстановления.

Винная кислота играет важную роль в вызревании виноматериалов и вин. Она образует комплексную соль винного железа, являющуюся катализатором окислительных процессов, необходимых при вызревании вин. Диоксифумаровая кислота, в которую окисляется винная кислота, значительно ускоряет вызревание вин.

В винограде находятся такие биологически активные катализаторы как ферменты, ускоряющие преобразование яблочной, фумаровой, янтарной, лимонной и других кислот.

Яблочная кислота в незрелом винограде превалирует над всеми другими органическими кислотами. В растениях она образуется как при фотосинтезе, так и при распаде углеводов. Исходным сырьем для образования яблочной кислоты в обоих случаях является пировиноградная кислота. Такой фермент как меликоэнзим играет важную роль в осуществлении фиксации диоксида углерода в зеленых растениях при фотосинтезе.

В винограде яблочная кислота накапливается в значительном количестве (до 15 г/дм³ на 1 кг винограда), особенно в неспелых ягодах.

Виноград из северных винодельческих районов содержит больше яблочной кислоты, чем южный виноград. Такое явление характеризуется тем, что при более высоких температурах яблочная кислота быстрее окисляется, чем винная, в результате чего яблочной кислоты в винограде южных районов меньше.

Известно, что в зеленых ягодах винограда содержание яблочной кислоты выше, чем винной. При созревании винограда количество яблочной кислоты резко уменьшается и в спелом винограде винная кислота всегда преобладает над яблочной.

Следует особенно отметить, что из всех органических кислот, встречающихся в винограде, наиболее лабильная яблочная кислота. Она принимает участие в процессах дыхания, подвергаясь быстрым преобразованиям, в обмене веществ винограда и является промежуточным продуктом ряда соединений.

Лимонная кислота содержится на всех стадиях вызревания винограда (от 0,2 до 0,4 г/кг винограда). При технической зрелости винограда ее количество увеличивается, а при физиологической зрелости – уменьшается. Итак, согласно динамики накопления лимонной кислоты, можно определить техническую и физиологическую зрелость винограда.

Яблочная, лимонная, янтарная, фумаровая кислоты, находящиеся в винограде, подвергаются непрерывному взаимопревращению по циклу ди — и трикарбоновых кислот в процессе созревания винограда. Такое взаимопревращение в неспелом винограде протекает более интенсивно, чем в зрелом.

Единственный путь образования в винограде лимонной кислоты – это энзимная конденсация щавелево-уксусной кислоты к ацетилу.

Янтарной кислоты в винограде содержится незначительное количество (от 0,07 до 0,2 г на 1 кг). В неспелом винограде ее больше, а в процессе вызревания ее содержание уменьшается.

Янтарная кислота может образоваться из уксусной, которая должна активизироваться ферментацией.

Янтарная кислота может образоваться и из других кислот в результате окислительного дезаминирования. Это очень стойкое химическое соединение, которое невозможно окислить даже царской водкой, но некоторые ферменты легко дегидрируют янтарную кислоту в фумаровую.

Щавелевая кислота содержится в клеточной ткани винограда в виде кристаллов. В сусло переходит незначительное количество (от 0,05 до 0,1 г/дм3).

Виноградное сусло и его состав

Сусло, полученное из зрелого винограда сразу после отжима, представляет собой жидкость с кислой реакцией. В ее состав входит целый ряд веществ, таких как сахара, находящиеся в растворенном состоянии, а также вещества в виде водяной суспензии или в состоянии коллоидной дисперсии. В дисперсии обнаруживаются белки, танины, ароматические или пектиновые вещества, энзимы и фосфатыжелеза, алюминия и кальция. Удельный вес сусла, естественно, окажется выше единицы. Он возрастает пропорционально содержанию сахара и обычно колеблется в пределах 1,05–1,08, но может быть несколько выше. Сусло состоит главным образом из воды (от 70 до 87 %) и целого комплекса растворенных и нелетучих при 100 °С веществ, образующих экстракт. В его состав, в свою очередь, входят преимущественно сахара, полифенолы, пектины, азотные соединения, кислоты и минеральные вещества.

Немаловажное значение имеют и так называемые вторичные компоненты сусла (получаемые при механическом отжиме ягод и гребней), которые можно свести к четырем категориям:

  • микроорганизмы, участвующие при спиртовом брожении (со своими биорегуляторами);
  • свойственные суслу ферменты, т. е. катализаторы химических реакций, происходящих в сусле;
  • микроэлементы (в небольших количествах), в частности медь, цинк, железо, марганец, бор, кремний, фтор, бром и др.;
  • витамины (А, группа витаминов В, С).

Таким образом, основными и вторичными компонентами виноградного сусла являются следующие.

Углеводы

В сусле присутствуют в разных и переменных количествах глюкоза и фруктоза. Эти два моносахарида называют сахарамивосстановителями. При их брожении образуется этиловый спирт.

Фенольные соединения (полифенолы)

Виноград-растение и виноград-ягода, как, впрочем, и другие органические ткани растительного происхождения, содержат целый ряд фенольных веществ. В том числе всевозможные (красные, синие, желтые) пигменты (антоцианы и флавоны) и таннины. С точки зрения виноделия эти вещества представляют особый интерес с учетом той роли, которую они играют в устойчивости, стабильности вин и их консервации, а также их влияния на особенности красных вин, их цвет, запах и вкус.

Антоцианы, название которых состоит из слов «антос» (цветок) и «цианос» (синий, голубой), образуют особое семейство флавоноидов, которые особенно широко представлены в пигментах цветов. Они начинают проявляться в момент утраты ягодами зеленой окраски и достигают своего максимума при достижении виноградом полной зрелости. Даже в одном сорте винограда уровень антоцианов может изменяться от года к году, чем и объясняется тот факт, что красные вина разных урожаев могут иметь цвет разной интенсивности. Одно время считалось, что таннин является веществом, способным превращать свежеснятые шкуры животных в неподдающуюся гниению кожу. Под таннинами мы понимаем фенольные соединения с молекулярным весом от 500 до 3 000 единиц, которые, помимо классических фенольных свойств, могут вызывать выпадение в осадок желатина и других белковых веществ. Свойства танинов зависят от природы элементарных молекул, входящих в их состав, от тех связей, которые устанавливаются между ними, и, главным образом, от величины их молекулярного веса. Наиболее тесно с их молекулярным весом связаны именно дубильные, т. е. вяжущие, свойства.

Статья по теме:   Олимпиада - сорт винограда

Пектиновые вещества

В 1 кг винограда количество пектина колеблется от 0,2 до 4,5 г. Чем богаче пектином виноград, тем менее он содержит сахаров. В процессе созревания ягод количество пектина увеличивается, а при брожении, наоборот, уменьшается. У пектина в сусле не выявляется никаких других сопровождающих смолистых веществ, поэтому смолистые компоненты в вине являются вторичными продуктами переработки. Пектины из-за своей высокой вязкости препятствуют быстрой фильтрации, а благодаря коллоидной структуре с отрицательным зарядом в жидкости они легко переходят в дисперсное состояние, придавая мутноватый оттенок.

Азотистые соединения

Азот в сусле содержится в основном в двух формах – аммиачной и органической. Значение азотных соединений в процессе брожения чрезвычайно велико. Благодаря им происходит формообразование, т. е. он создаѐт структуру дрожжевой клетки. Азот аммиачный быстро исчезает в течение первых двух дней одновременно с развитием дрожжевых культур. Количество аминокислотного азота начинает сокращаться только на второй, третий и четвертый день, особенно если температура превышает 25 °С. К шестому дню в сусле остается минимальное содержание органического азота, после чего его количество вновь увеличивается при автолизе дрожжей.

Органические кислоты и их соли

Органические кислоты, присутствующие в сусле, вместе составляют общую кислотность, выраженную в граммах винной кислоты на 1л. Среди них выделяются винная, яблочная, лимонная, гликолевая, глиоксиловая и щавелевая кислоты. Янтарная кислота, которая содержится в вине, в сусле практически отсутствует. В период роста плодов кислоты накапливаются в большом количестве, но при их созревании начинают убывать с того момента, когда ягоды перестают активно функционировать. Их физиологическая функция связана с осмотическим явлением и набуханием клеток. Кроме того, кислоты облегчают диффузию, т. е. распространение целого ряда веществ по всему растению, и обеспечивают ему жизнестойкость. Винная (тартаровая) кислота наиболее типична для винограда. В старину ее так и называли «виноградная кислота». Эта кислота присутствует во всех частях растения. Среди наиболее важных солей винной кислоты – кислая соль калия, которая также имеет названия вино-кислый калий и кислый тартрат калия.

Яблочная кислота широко распространена в растительном мире, даже шире, чем винная кислота. В виноградной лозе она встречается, помимо ягод, в листьях и зеленых гребнях, но в особой форме. Она присутствует во всем биологическом цикле ягоды винограда, хотя и имеет тенденцию к уменьшению в период созревания плодов. Ее кисловатый вкус напоминает вкус винной кислоты, но более приятный. Лимонная кислота осуществляет физиологическую защиту витамина С.

Минеральные вещества и зола

Эти две позиции иногда путают друг с другом, но на самом деле они различны. Под минеральными веществами следует понимать сумму катионов (металлов) и неорганических анионов (кислотных остатков), содержащихся в сусле. Другими словами, минеральные вещества – это негорючие соединения, находящиеся в сусле в растворенном виде, которые виноград вбирает из почвы, а зола представляет собой остатки химического сгорания сусла.

Особенности состава виноградного сусла и вина

Вино — это сложный продукт биохимических превращений Сахаров и других веществ виноградной ягоды при спиртовом брожении сусла. Летучие и нелетучие вещества вина преобразуются в новые соединения в процессе формирования и созревания виноматериалов. В отличие от крепких спиртоводоч-ных изделий, состоящих из смеси этилового спирта, воды и различных эссенций, вино обладает целым рядом питательных и биологически активных веществ, полезных для организма человека. Многие из них участвуют в углеводном, азотистом и минеральном обмене. Это — глюкоза, фруктоза и другие простые и сложные углеводы, аминокислоты, пептиды и белки, органические кислоты и их соли, фенольные и минеральные вещества, ферменты и витамины, эфирные масла ягоды и вещества аромата, выделяемые дрожжевыми клетками. Это — набор полезных для человека микроэлементов: калий, рубидий, фтор, йод, марганец, кобальт, ванадий, титан, радий, висмут и многие другие вещества. Всего в вине обнаружено более 400 различных соединений. Их ценность состоит не в количестве, а в многочисленности и комплексности действия. Современная медицина, изучая природные средства лечения, все чаще исследует и берет в арсенал лекарственных препаратов и виноградное вино.

Химический состав вин очень разнообразен и зависит от экологических условий произрастания винограда, сорта и технической зрелости ягод, технологии первичного и вторичного виноделия. Многообразие цветовых, вкусовых и ароматических достоинств вин возникает из многокомпонентного состава виноградного сусла благодаря жизнедеятельности дрожжей, технологии приготовления и обработки виноматериалов. В таблице представлен средний состав виноградного сусла, сухих столовых и десертных вин, сбалансированный по основным группам химических веществ.

Как видно из табл.1, биологически чистая вода, поступающая из почвы в виноград вместе с минеральными веществами, содержится от 70% в десертных до 90% в сухих винах. В этом и состоит натуральность виноградных вин в отличие от различного рода алкогольных напитков, в том числе плодово-ягодного происхождения, куда часто для нормализации состава добавляют водные растворы.

УСРЕДНЕННЫЙ БАЛАНС ХИМИЧЕСКОГО СОСТАВА ВИНОГРАДНОГО СУСЛА И ВИНА

Этиловый спирт является естественным продуктом превращения Сахаров виноградного сусла при брожении. Этиловый спирт эндогенного происхождения обеспечивает натуральность вина, гармонизирует вкус и придает ему особые свойства.

Натуральные сухие вина содержат до 14% объемной доли спирта; крепленые вина содержат до 20% объемной доли этилового спирта, причем часть его — экзогенного происхождения, что лишает вино подлинной натуральности. Крепость вин при выдержке немного снижается вследствие окисления и этерификации этилового спирта. Объемная доля этанола также уменьшается в процессе технологической обработки вина за счет потерь.

Легкие натуральные столовые вина имеют низкую объемную долю этилового спирта 8—10%; в тяжелых столовых винах 13—14% крепости; нежные ликерные вина имеют крепость на уровне 12—14%; полный вкус характерен для мадеры при объемной доле этанола 19,5—20%.

В игристых винах ценится невысокая крепость: 10—12%. При объемной доле спирта 13—14% качество игристых вин ухудшается.

Этиловый спирт оказывает большое влияние на органо-лептические качества вина. Он участвует в создании аромата, букета и вкуса вина. Будучи продуктом брожения или внесенный при спиртовании, этиловый спирт создает целую гамму вкусовых оттенков молодого вина, иногда резко выделяется в аромате и вкусе. В процессе выдержки и особенно при тепловой обработке этиловый спирт ассимилируется с составными частями вина, тогда вкус становится мягким и гармоничным.

Вещества аромата. Наиболее многочисленная группа соединений винограда и вина, насчитывающая более 400 компонентов. По происхождению вещества аромата представлены тремя группами: из виноградной ягоды, в виде летучих продуктов брожения, и вещества, возникающие в процессе созревания, обработки и хранения вина.

Первую группу соединений называют эфирными маслами винограда. В винограде эфирные масла представлены летучими углеводородами, спиртами, карбонильными соединениями, а также высококипящими терпеноидами, жирными летучими кислотами и сложными эфирами. Несмотря на высокую температуру кипения (180—230°С), терпеноиды и сложные эфиры обладают способностью испаряться при обычной температуре окружающей среды и создают вокруг себя благоухание. Благодаря эфирным маслам проявляются сортовые качества многих сортов винограда, формируются привлекательные особенности соков и вин, приготовленных из него. Это особенно хорошо известно на примере мускатов.

Статья по теме:   Сорт винограда Александер

Эфирные масла сосредоточены главным образом в кожице винограда и во внешних слоях мякоти: от 50 до 140 мкг в 1 кг ягод. Содержание отдельных компонентов составляет 0,3—0,5 мкг/кг, и каждый из них имеет свою ароматическую ноту: роза, цитрон, фиалка, мускат и другие.

Тонкий сортовой аромат имеют сорта группы Пино, Рислинг рейнский, Совиньон зеленый, Каберне-Совиньон. Более сильный и устойчивый аромат у мускатных сортов, у сорта Траминер розовый. Американские сорта винограда (Изабелла, Лидия и др.) имеют навязчивый, устойчивый и приторно ярким аромат земляники. Этот аромат, обязанный метиловому эфиру антраниловой кислоты, как и сам виноград, резко отличается от аромата европейских сортов.

При перезревании винограда содержание легколетучих компонентов эфирных масел у всех сортов снижается. При настаивании мезги сусло обогащается сортовым ароматом ягоды. В процессе тепловой обработки мезги, необходимой для получения красных десертных вин типа кагор, формируются специфичные «кагорные тона» — топленые сливки и легкая уварен-ность в аромате и вкусе.

Под действием благородной плесени Botritis cinerea на перезревающих гроздьях некоторых сортов винограда (Совиньон, Фурминт, мускаты) происходит новообразование веществ аромата в составе эфирных масел ягод. Они и создают специфические тона полусладких вин типа шато-икем, барзак, сладких токайских венгерских вин.

В процессе спиртового брожения виноградного сусла к аромату сорта прибавляются приятно пахнущие ароматические вещества, которые образуются в процессе жизнедеятельности дрожжей. Это этиловый спирт, который, безусловно, участвует в сложении аромата и вкуса молодого вина, а также высшие спирты, эфиры и альдегиды. Среди них особенно выделяется

b — фенилэтанол, создающий неповторимую гамму аромата молодых столовых вин. Образование высших спиртов зависит от температуры брожения сусла, расы дрожжей и количества дрожжевых клеток.

Повышение количества высших спиртов до 300—400 мг/дм 3 нежелательно для столовых белых сухих, шампанских и коньячных виноматериалов, однако придает многообразие оттенков в аромате и вкусе столовых, игристых и крепких вин.

При яблочно-молочном кислотопонижении под действи-• ем бактерий происходит обогащение цветочного аромата молодого вина и смягчение его вкуса за счет превращения зеленой яблочной кислоты в мягкую молочную кислоту.

Высшие алифатические и ароматические спирты ((3 — фенилэтанол, тирозол и др.), являясь побочными продуктами спиртового брожения, составляют основу аромата молодых вин и украшают его ароматическую гамму. Особенно выразительный аромат имеют вина из винограда мускатных сортов. Это приятно пахнущие терпеновые спирты (линалоол, нерол, гераниол, фарнезол), а также альдегиды, ацетали и эфиры технологического происхождения, например, в хересе, в мадере.

Третья группа веществ аромата формируется при созревании и технологических обработках вина. Эти вещества обычно характеризуют сам тип вина. Так, в портвейнах в процессе тепловой обработки с ограниченным доступом кислорода формируются высоко ценимые плодово-фруктовые тона, иногда имеющие оттенок сухофруктов. В винах типа мадера при тепловой обработке с избытком поступающего из воздуха кислорода развиваются особенные, так называемые мадерные (альдегидные) тона. Иногда их сравнивают с каленым орешком миндаля и даже коньячным тоном. В процессе хересования сухих вино-материалов под воздействием хересных рас дрожжей образуются вещества аромата, которые создают хересный тон. Это прежде всего альдегиды и ацетали вина. В хорошем хересе содержание альдегидов достигает от 400 до 500 мг/дм 3 , ацеталей — до 250 мг/дм 3 , так что их соотношение должно быть примерно 1:2.

При классической бутылочной шампанизации за счет продуктов вторичного брожения и последующей выдержки на дрожжах бутылочного кюве образуются специфические подсолнечные тона, характер которых до сих пор не получил точного обоснования.

В Токае (Венгрия) из сортов Харш Левелю и Фурминт готовят уникальные токайские вина. Они великолепны во вкусе, имеют тонкий, очень сложный букет. Формирование при выдержке в бочках специфичного токайского тона виноделы Венгрии приписывают бархатной плесени Кладоспориум цел-ларе. Эта плесень иногда довольно толстым мягким слоем покрывает стены глубоких токайских подвалов в горе Торцал. Однако научного объяснения этому явлению нет.

Вещества экстракта. Все остальные соединения — нелетучего характера, и они относятся к группе экстрактивных веществ вина. Среди них наибольшая доля приходится на углеводы, органические кислоты, многоатомные нелетучие спирты (глицерин, 2,3-бутиленгликоль и другие) и фенольные вещества.

Углеводы являются единственным источником эндогенного спирта и углекислого газа эндогенного происхождения. Благодаря именно этим качествам тихие столовые вина и пенящиеся игристые вина относят к категории натуральных вин.

Экстракт оказывает благотворное влияние на гармонию вкуса вина. Углеводы придают сладость крепким и десертным винам, смягчают вкус столовых полусухих и полусладких вин, способствуют улучшению цвета, букета и вкуса крепких типажных вин (херес, мадера, портвейн) при их тепловой обработке.

Величина приведенного (бессахарного) экстракта строго нормирована в мировом винодельческом законодательстве; это один из главных показателей кондиционности вина, поэтому внесение в бродящее сусло неректификованного виноградного спирта чревато опасностями. Вино из-за недостатка глицерина может оказаться нетипичным по экстракту.

Совершенно необычное содержание приведенного экстракта имеют токайские вина Венгрии. Так, 3-путонное ассу имеет до 25 г/дм 3 , 4-путонное — до 30 мг/дм 3 , 5-путонное — 35 г/дм 3 , 6-путонное — 40 г/дм 3 приведенного (бессахарного) экстракта. В токайской эссенции, приготовленной из одних за-изюмленных ягод, находят почти 50 г/дм 3 бессахарных экстрактивных веществ.

Органические кислоты и их калийные соли обеспечивают бактерицидные свойства вин, предохраняют их от заболеваний. Недостаточная кислотность делает вкус простым, плоским; повышенная — приводит к резкому, грубому негармоничному вкусу. Каждому типу вина соответствует своя оптимальная кислотность. Мягкая кислотность во вкусе выдержанных вин объясняется высоким содержанием связанных кислот. Это — одно-и двузамещенные соли, кислые эфиры.

Фенольные вещества вина представлены мономерными, олиго- и полимерными соединениями. Они играют большую роль в сложении аромата и вкуса вин, определяют их цветовые характеристики. Меланины — высококонденсированНые фенольные вещества обладают черной окраской и соответственно влияют на цвет окисленных красных вин. Наибольшим содержанием фенольных веществ обладают красные столовые и кахетинские вина, а также кагор и мадера. Конденсированные высокомолекулярные фенольные соединения и их комплексы с анто-цианами обеспечивают своеобразие цвета и вкуса выдержанных красных вин.

Азотистые вещества прямо и косвенно влияют на букет, вкус и цвет вина, вступая во взаимодействие с другими веществами, и участвуют в процессе их окисления. Это характерно для окисленных типов вин (токайские, мадера) и нежелательно для шампанских виноматериалов и белых столовых вин. Белковые вещества являются причиной весьма частых помутнений готовых вин.

На органолептические свойства виноматериалов и вин отрицательное действие может оказать избыток ионов тяжелых металлов, в частности, железа, меди. Они придают вину посторонний неприятный металлический привкус и могут давать металлические кассы. Содержание железа до 10 мг/дм 3 практически не отражается на вкусе вина.

Натуральные виноградные вина обладают целым рядом лечебных факторов: антилучевыми, антисклеротическими, антистрессовыми, антиалкогольными, бактерицидными и другими.

Источники:

http://vinograd-vino.ru/stati-i-issledovaniya/584-khimicheskij-sostav-vinograda-i-susla-dlya-proizvodstva-shampanskikh-vinomaterialov.html
http://nomnoms.info/vinogradnoe-suslo-i-ego-sostav/
http://znaytovar.ru/new2984.html

Ссылка на основную публикацию

Adblock
detector
×
×
×
×