Использование методов биотехнологии в виноградарстве

Оглавление

Инновационные биотехнологии в виноградарстве

Инновационные биотехнологии в виноградарстве

В лаборатории биотехнологии ВНИИВиВ им. Я. И. Потапенко исследования проводят по клональному микроразмножению перспективных сортов винограда; оздоровлению посадочного материала от вирусов, микоплазм, бактериального рака; нетрадиционной се­лекции на бессемянность; созданию коллекций генофонда винограда in vitro. Разработаны теоретические основы метода селекции винограда на бессемянность с использованием обоих бессемянных родителей и последующей культуры изолированных семяпочек in vitro.

Метод основан на предотвращении дегенеративных процессов в семяпочке при скрещивании обоих бессемянных родителей Изученные сортовые особенности эмбриогенеза определяют подбор сортов и комбинаций скрещивания. Разработаны способы определения сроков изолирования семяпочек, двойной стерилизации ягод и семяпочек перед вводом их в культуру, способ спасения полученных аномальных растений и т. д.

Разработан способ повышения жизнеспособности зародышей на ранних этапах онтогенеза под воздействием обработки регуляторами роста генеративных органов бессемянных сортов. Использование физиологически активных веществ Циркон, 6-БАП и крезацин позволяет в 2-3 раза увеличить количество нормально развитых семяпочек в ягоде, стимулирует прирост массы гибридных семяпочек на 2-9 мг, обеспечивает увеличение на 50 % количества семяпочек, содержащих развитые зародыши. Выявлен характер влияния этих препаратов на массу ягод, закладку, рост и развитие семяпочек в различных комбинациях скрещивания. В результате использования данного метода получено более 300 сеянцев по 12 комбинациям внутри- и межвидовых скрещиваний. По комплексу агробиологических и хозяйственных признаков выделены 2 сеянца из семьи Кишмиш ЦГЛхРусбол, которые могут быть использованы в дальнейшей селекционной работе с целью получения гибридных форм высокой категории бессемянности.

Разработаны способы повышения жизнеспособности пыльцы для повышения эффективности селекционного процесса при выведении бессемянных сортов винограда.

Выявлены ранее не изученные особенности формирования мужского гаметофита и возможности повышения его жизнеспособности. Показано, что в годы с неблагоприятными метеорологическими условиями во время формирования мужских гамет необходимо повышать жизнеспособность пыльцы бессемянных сортов. Установлено, что проведение зеленых операций, применение веществ химической регуляции расти­тельного организма, своевременный сбор пыльцы, оптимальные условия хранения, выявление наиболее перспективных сортов-опылителей способствуют улучшению ее жизнеспособности.

Биотехнология получения саженцев винограда, свободных от карантинных объектов, оздоровленных от возбудителей хронических болезней (вирусных, бактериальных, микоплазменных), являющихся основой для производства сертифицированного посадочного материала, включает проведение фитосанитарной селекции, отбор визуально здоровых типичных и продуктивных маточных растений, оздоровление при помощи культуры апикальных меристем при относительном размере апекса 0,1-0,2 мм, регенерацию растении из меристем.

Разработаны новые биотехнологические приемы для всех этапов размножения, начиная от формирования меристематических зон до высадки в грунт, направленные на увеличение выхода растений — регенерантов, способствующие реализации биологического потенциала оздоровленных растений.

Способ воздействия на меристемы электромагнитным облучением низкой интенсивности (СВЧ-лучи) в комплексе с узкополосным лазером обеспечивает повышение регенерационной способности меристем в 5,5 раза. Применение СВЧ- лучей на этапе микрочеренкования способствует увеличению суточной скорости роста и улучшению размерных характеристик растений более чем в 1,5 раза.

Осуществлена оптимизация состава питательных сред на отдельных этапах клонального микроразмножения при помощи регулятора роста эмистим. Доказано, что эмистим в питательную среду на этапе ввода меристем в культуру следует добавлять в концентрации 10 -5 -10 -11 , для улучшения ризогенеза — 10 -10 %, на этапе микрочеренкования — от 10 -7 до 10 -10 . При переносе растений в нестерильные условия на этапе адаптации необходимо обрабатывать их эмистимом в разведении 10 -7 —10 -10 . При введении эмистима в состав питательной среды улучшаются приживаемость микрочеренков, образование и рост корней, побегов и листьев, что обеспечивает ускорение процесса клонального микроразмножения более чем на 2 недели и, как следствие, повышение его эффективности.

Усовершенствованы существующие и установлена возможность использования новых приемов световой биотехнологии, позволяющих повысить эффективность метода оздоровления и клонального размножения винограда.

Теоретическая значимость исследования — показана целесообразность пересмотра некоторых аспектов культивирования в направлении снижения энергоемкости метода клонального микроразмножения. Разработана оптимизация условий культивирования изолированных тканей винограда in vitro при помощи интенсивности освещения, изменения продолжительности фотопериода, качества излучения, в том числе в сочетании с регулятором роста растений эмистим, которая обеспечивает повышение качества, выхода мериклонов и снижение их себестоимости.

Разработан способ адаптации оздоровленных пробирочных растений винограда к нестерильным условиям среды. Подобран оптимальный почвенный субстрат, разработан режим снижения влажности воздуха в индивидуальных камерах, выявлены оптимальные способы применения и концентрации препаратов нового поколения для повышения адаптивности растений при переводе в нестерильные условия и улучшения их развития во время доращивания.

Разработана технология закладки и ведения базисных маточников, обеспечивающая высокую приживаемость и оптимальное развитие оздоровленных растений винограда в условиях песчаных почв.

Растениями, оздоровленными при помощи апикальных меристем в культуре in vitro, заложен базисный маточник на площади 3,5 га. Положено начало перевода виноградар­ства на сертифицированную основу.

пространственное размещение и карантинные мероприятия, снижающие риски повторного заражения оздоровленных растений;

способ высадки вегетирующих растений в теплицу или открытый грунт, позволяющий улучшить микроклимат растений в жаркий летнии период и избежать подмерзания корневой системы зимой;

применение системы точечных подкормок сложными комплексными удобрениями и препаратами нового поколения, способствующей оптимальному развитию маточных кустов (корневой системы и побегов), накоплению большего количества запасных питательных веществ и улучшению анатомических особенностей лозы.

Таким образом, на основании разработанных методов создана технологическая цепочка, обеспечивающая процесс регенерации меристем: от меристемы к базисному маточнику.

Высажены на базисном маточнике оздоровленные при помощи культуры апикальных меристем растения сортов:

Статья по теме:   Орошение виноградников - виноград

селекции института: Баклановский, Дружба, Золотинка, Каберне северный, Памяти Кострикина, Платовский, Талисман, Фиолетовый ранний, Цветочный;

донские аборигенные сорта: Кабашный, Красностоп золотовский, Косоротовский, Крестовский, Кумшацкий белый, Пухляковский, Сибирьковый, Сыпун черный, Цимладар, Цимлянский белый, Цимлянский черный и 2 его клона (1-3-13-2-3 и 1-1-61-10-3);

классические сорта Каберне Совиньон, Мерло, Пино нуар;

подвои Гравесак, Виерул 3, Кобер 5ББ, Презент, Рупестрис дю Ло, РСБ, SО4, Телеки 5С, Феркаль.

Выращивание сертифицированного посадочного материала из оздоровленного in vitro предбазового материала позволяет не только избавится от ряда фитоплазменных и вирусных болезней, но и от сосущих вредителей, таких как филлоксера и виноградный зудень. Уменьшается также вероятность присутствия на маточных растениях возбудителей эски, эутипоза и черного рака, то есть возбудителей, входящих в группу хронических вредных организмов. Благодаря этому переход на закладку промышленных насаждений сертифицированным посадочным материалом обеспечивает повышение продуктивности виноградников и продление их продуктивной эксплуатации. В случае предохранения от вторичного заражения возбудителями хронических болезней реально увеличит продуктивность будущих насаждений в 1,5-2 раза.

Источник: Дорошенко Н. П. Инновационные биотехнологии в виноградарстве./ Виноделие и виноградарство. 2013, № 5, с.35-37.

Материал на сайт подготовил Севастьянов В. Н.

Использование методов биотехнологии в виноградарстве

Шалайкин Николай Васильевич

член Совета АППЯПМ от Белгородской области, генеральный директор ООО «Федосеевские сады»

ЖБАНОВА ОЛЬГА ВЛАДИМИРОВНА

ИСПОЛНИТЕЛЬНЫЙ ДИРЕКТОР АССОЦИАЦИИ ПРОИЗВОДИТЕЛЕЙ ПЛОДОВ, ЯГОД И ПОСАДОЧНОГО МАТЕРИАЛА (АППЯПМ)

ТЕЛ.: 8-905-123-95-09; asprus@mail.ru

СОРТОВАЯ АГРОТЕХНИКА ПРИ ПРОИЗВОДСТВЕ ЯГОД МАЛИНЫ
(ЖИДЕХИНА Т.В.)

СОВРЕМЕННЫЙ СОРТИМЕНТ ЯБЛОНИ

Батукаев А.А.
Агротехнологический институт ЧГУ
Чеченский НИИ сельского хозяйства

Биотехнологические методы в системе производства оздоровленного посадочного материала винограда

Современное виноградарство России должно базироваться на производстве сертифицированного посадочного материала. Основная цель исследований заключалась в совершенствовании технологий клонального микроразмножения с использованием регуляторов роста. Задача состоит в получении здорового посадочного материала винограда и введение системы сертификации посадочного материала по образцу европейских стран.

Технология производства оздоровленного посадочного материала в качестве составной части включает биотехнологические приемы, комплексное оздоровление с использованием культуры изолированных апексов, ускоренное размножение оздоровленных экземпляров на искусственных питательных средах и создание коллекций оздоровленных форм in vitro

К основным преимуществам использования биотехнологических приемов можно отнести следующие:

  • возможность получения оздоровленного от вирусов и бактериального рака посадочного материала;
  • быстрое размножение ценных клонов;
  • возможность работы в течении всего года и планирование выпуска материала к определенному сроку;
  • при интродукции растений устраняется вероятность завоза и распространения карантинных растений;
  • паспортизация сортов и форм с помощью молекулярно-генетического маркирования и установление филлогенетических связей;
  • длительное хранение материала в условиях in vitro.

Объекты и методы исследований

Объектом исследований явились комплексно-устойчивые сорта винограда селекции Всероссийского НИИВиВ имени Я.И.Потапенко, НИВиВ «Магарач» Украинской академии аграрных наук, молдавской, венгерской селекции и др.

В качестве исходного материала были взяты интенсивно растущие зеленые побеги винограда, которые разрезали на одноглазковые черенки и далее проводили вычленение меристем в ламинарных боксах.

Одноглазковые черенки перед вычленением меристемы стерилизовали в 2 %-м растворе гипохлорита натрия. Простерилизованные органы помещали в стерильную чашку Петри. Перед вычленением с верхушки глазка удаляли покровные чешуи, последовательно обнажая верхушечную меристему с примордиальными листочками. Эту операцию проводили с помощью препаровальной иглы под стереоскопическим микроскопом МБС-10, установленным в пылезащитной камере (ламинар-боксе). Вычленяли меристемы от 200 до 400 микрон специальной препаровальной иглой и немедленно помещали на поверхность агаризованной среды в чашки Петри, которые в свою очередь были размещены в культуральной комнате с соответствующими условиями: освещенность 3…4 тыс. люкс, температура 27…28С, относительная влажность воздуха 65…70 %.

При этом использовали модифицированную питательную среду MS (Мурасиге и Скуга) с витаминами: тиамин — 1 мг/л, пиридоксин — 1 мг/л, никотиновая кислота — 1 мг/л, мезоинозит — 50 мг/л, источник углерода (сахароза) — 2 %, агар — 0,7 % и доводили рН до 6,4…6,5.

В качестве регуляторов роста в питательную среду добавляли ауксины и цитокинины в различных концентрациях и сочетаниях. Из группы ауксинов было изучено влияние индолил-масляная кислота (ИМК) и индолил-уксусная кислота (ИУК), из группы цитокининов: 6-бензиламинопурин (6-БАП), 2-изопентил-аденин (2iP), кинетин, а также гибберелловая кислота (ГК).

Культивирование растительного материала осуществляли на первом этапе в чашках Петри, далее в пробирках размером 40 х 120 мм, содержащих 20 мл питательной среды.

Результаты исследований

Проведенные наблюдения показали, что на первом этапе выращивания (2 недели) часть меристем (40-60% в зависимости от сорта), начали некротизировать. Оставшиеся меристемы через месяц после посадки развились в микропобеги размерами 2…2,5 мм. Эти микропобеги повторно пересаживали на такую же по составу питательную среду. Пересадку производили в биологические пробирки.

Степень приживаемости апикальных меристем на этапе введения в культуру in vitro находится в среднем на уровне 40-50%.

Прижившиеся апикальные меристемы, через месяц после посадки были пересажены на питательную среду с содержанием тех же компонентов. Пересадку производили в биологические пробирки размером 40 х 120 мм, в течение 45…55 дней образовались регенеранты размерами 6…10 см. Далее эти микрорастения были расчеренкованы и получены микроклоны.

На этапе пересадки кластер-побегов приживаемость их достаточно высокая (75-90%). В течение 45-50 дней образовались регенеранты растений размерами 6…10 см. Далее мы приступили к их клональному микроразмножению. Растения-регенеранты разрезали на фрагменты, включавшие узел с листом и почкой (нижняя часть междоузлия длиннее верхней на 1…2 см). Полученные микрочеренки высаживали в биологические пробирки (40 х 120 мм) на агаровую среду.

Влияние регуляторов роста на развитие эксплантов винограда в условиях in vitro

Одним из важнейших и неотъемлемых компонентов питательной среды являются регуляторы роста. Их тщательный подбор и выявление оптимальных концентраций позволяют повысить эффективность метода in vitro.

Проведенные эксперименты показали, что регенерация побегов происходила при всех концентрациях 6-БАП, кроме как при добавке препарата в количестве 5,0 мг/л, когда верхушки сразу начинали чернеть и гибли. Верхушки, выращиваемые на среде с концентрацией 0,1 мг/л 6-БАП развивались очень медленно. Самые лучшие результаты были достигнуты на среде с концентрацией 0,5…1,0 мг/л. (табл. 1).

Статья по теме:   Уришула – грузинский сорт винограда

Биотехнологические методы ускоренного размножения и оздоровления, селекции бессемянных сортов и создания коллекций генофонда винограда Дорошенко, Наталья Петровна

Диссертация, — 480 руб., доставка 1-3 часа, с 10-19 (Московское время), кроме воскресенья

Автореферат — бесплатно , доставка 10 минут , круглосуточно, без выходных и праздников

Дорошенко, Наталья Петровна. Биотехнологические методы ускоренного размножения и оздоровления, селекции бессемянных сортов и создания коллекций генофонда винограда : диссертация . доктора сельскохозяйственных наук : 06.01.08.- Новочеркасск, 1999.- 291 с.: ил. РГБ ОД, 71 00-6/105-X

Введение к работе

Актуальность проблемы. В настоящее время в биологической науке и в сельскохозяйственной практике, в т.ч. ив виноградарстве, на первый край выходит проблема адаптации, так как с ней связаны возможности реализации генотипа в онтогенезе, ареалы культур и, что особенно важно, получение максимального хозяйственного эффекта.

Усилению адаптации виноградарства в условиях интенсификации отрасли должно способствовать применение Ьовременных методов биотехнологии, Методы культуры органов, тканей и клеток in vitro должны занять прочное место в арсенале средств, определяющих значительный прогресс в селекции винограда и в деле производства посадочного материала этой древнейшей и щироко распространенной сельскохозяйственной культуры.

Методы in vitro могут вносить ценный вклад на каждом этапе селекционного процесса. Использование клонального микроразмножения позволяет сократить сроки размножения новых сортов по сравнению с традиционными методами в 4-5 раз. Преимущества микроразмножения in vitro заключаются а необходимости малого количества исходного материала, минимальной лабораторной плошади для культур, в высоком коэффициенте размножения.

Клональное микроразмножение также является составной часть» интегрированной защиты виноградных насаждения, так как, благодаря высокому коэффициенту размножения, является наиболее вероятным способом массозого размножения перспективных устойчивых сортов винограда. Кроме- этого, небольшой размер экспланта. применяемого для клонального микреразмноженкя, поверхностная стерилизация его. асептический перенос на питательную среду и субкультивирование в условиях, исключающих инфицирование, приводит к оздоровлению полученных растений от Филлоксеры, нематод, грибных патогенов.

В борьбе против вирусных болезней винограда не эффективно использование агротехнических или химических методов. Единственным способом борьбы является получение безвирусного посадочного материала. Наиболее надежным методом оздоровления посадочного материала винограда является использование культуры меристемы и последующее клональное микроразмножение оздоровленных растений.

Оздоровленный посадочный материал является базисным для создания маточных насаждений и перевода вииогряпярптвя чя длитнут

Фонд научной литературы

— 4 -основу, что обеспечит продление эксплуатации виноградников и повышение их продуктивности на 30-40.

Особо актуальным является пополнение сортимента винограда новыми бессемянными сортами, так как бессемянность является ценным хозяйственным признаком для сортов винограда всех направлений использования — потребления в свежем виде, приготовления сушеной продукции. Кроме того, это прекрасное сырье для винодельческой промышленности. Во всем мире возрастает внимание к бессемянному винограду. Однако, группа бессемянных сортов пока еще малочисленна. Практически отсутствуют бессемянные сорта в существующем сортименте винограда России.

Перспективным направлением создания бессемянных сортов является использование культуры изолированных семяпочек (зародышей в семяпочке) m vitro. Метод основан на получении жизнеспособного потомства от скрещивания бессемянных сортов между собой с последующим культивированием зародышей семени в условиях in vitro. Это открывает принципиально новые перспективы — позволит сократить продолжительность селекции и увеличить бессемянность.

Важным вкладом в практику сельского хозяйства для вегетативно размножаемых культур является технология сохранения в культуре In vitro генофонда, используемого в селекции, в виде растущих коллекция — периодически су(5клонируемых пробирочных растений, оздоровленных методом культуры меристем. Цель коллекций — обеспечить селекционера в любое время генотипом, несущим искомые признаки, нужные для его работы, насущной необходимостью также является обеспечение коллекций материалом, находящимся под угрозой исчезновения. В виноградарстве также существует потребность в надежных методах хранения генофонда in vitro.

В последние десятилетия опубликовано большое количество научных сообщений по культуре органов, тканей и клеток винограда. Однако многие вопросы применения биотехнологии в’ виноградарстве остаются нерешенными. К ким следует отнести оздоровление растений от вирусов методом апикальных меристем размером менее 0,2 мм и регенерацию кз них растений. В селекции бессемянных сортов недостаточно изучена и требует своего решения культура семяпочек винограда на искусственной питательной среде. Наименее изученным является вспрос создания коллекций винограда In vitro.

Цель и задачи исследований. Цель наших исследований:

— разработать технологический процесс клональяого микроразм-

нокання и оздоровления посадочного материала ценных аборигенных, интродуцнрованных и новых высокопродуктивных, устойчивых к болезням, вредителям и.неблагоприятным внешним условиям сортов винограда, обеспечивающий ускоренное размножение их с сохранением генетических особенностей, биологических и агрономических свойств;

разработать метод селекции винограда на бессемянность скрещизанием бессемянных сортов между собой.и с последующим культивированием изолированных семяпочек;

разработать методы сохранения in » vitro коллекции сортов винограда для консервации генетических ресурсов, регионального и международного обмена коллекционным материалом.

Достижение поставленной цели осуществлялось на основе решения следующих задач:

Усовершенствовать стерилизацию исходных эксплантов и мероприятия, исключающие ингибирование ростовых процессов.

Разработать меры борьбы с хронической инфекций, проявляющейся при продолжительном культивировании пробирочных растений.

Подобрать питательную среду с тем. чтобы обеспечить оптимальные условия ввода в культуру тканей эксплантов малых (0,17-0,25 мм) и предельно малых размеров (0,075-0.1 мм), обеспечивающих оздоровление растений, а также оптимальные условия на этапе кикрочеренкования.

і. Разработать способе оптимизации клонального микроразмно-

ЖЭНИЯ.

Усовершенствовать адаптацию пробирочных растений к нестерильным условиям»:

Разработать способы создания сортоЕЫХ маточников интенсивного типа из саженцев, оздоровленных и размноженных in vitro.

Осуществить подбор родительских сортов и комбинаций скрещивания при селекции на бессемянность.

Определить сроки изолирования семяпочек и пересадки их на питательные среды.

Подобрать питательные среда., способствующие образованию жизнеспособных эмбрионов.

ю. Изучить морфологические и агробиологические особенности гибридных сеянцев, полученных из семяпочек в культуре тканей.

її. выявить влияние понішенпОн положительно*! температуры па «шкималйзащда» роста пробирочных растений и разработать способ продолжительного хранения.

Изучить возможность депонирования винограда при добавлении в питательную среду ингибитора роста хлорходинхлорида (ССС) и осмотических ингибиторов маннита и сорбита, уточнить их концентрации и способы применения,

Исследовать влияние естественных ингибиторов из размолотых семян на ингибирование роста растений и разработать способ продолжительного хранения винограда in vitro с их применением.

Статья по теме:   Толстокорый - сорт винограда

изучить возможность депонирования винограда in vitro при сочетании двух факторов культивирования — пониженной температуры и естественных ингибиторов, добавляемых в питательную среду.

Научная новизна. I. Разработаны и научно обоснованы некие биотехнологические приемы технологического процесса клонального микроразмножения и оздоровления растений:

Впервые разработан способ борьбы с хронической инфекцией, вызываемой медленно растущими патогенами.

Предложена схема регенерации растений из эксплактов малых (0,17-0,25 мм) и предельно малых размеров (0.075-0.1 мм) с разделением этапа ввода на два подэтапа,

Разработан способ укоренения побегов, полученных из меристем, патент N 1601117.

Доказана возможность применения среды Ли и де Фоссарда на этапе микрочеренкования побегов винограда.

Впервые разработаны способы оптимизации питательной среды на этапе микрочеренкования, основанные на вводе в ее состав 6-БАП или стимуляторов роста естественного происхождения из семян винограда, патент N 2041609.

S. Выявлена возможность повышения регенерационной способности меристем (патент N 2120739) и оптимизации клонального микроразмножения на этапе микрочеренкования побегов (патент К 2077192) воздействием электромагнитного излучения низкой интенсивности.

Разработан способ адаптации пробирочных растений к нестерильным условиям, патент N 1792269,

Предложены способы закладки интенсивных маточников из оздоровленного и размноженного In vitro посадочного материала.

Усовершенствован способ травянистых индикаторов для тестирования растения винограда на наличие вирусов.

П. Впервые в России разработан метод селекции винограда на бессемянность скрещиванием бессемянных сортов с последующей культурой изолированных семяпочек in vitro.

— 7 -III. Разработаны способы увеличения продолжительности хранения для создания коллекций генофонда винограда in vitro:

Предложены новые условия хранения коллекционного генофонда винограда in vitro на среде для хранения при температуре 4С.

Доказана возможность увеличения продолжительности хранения при добавлении в питательную среду хлорхолинхлорида. сорбита, 6-БАП при увеличении содержания сахарозы.

.3. Достигнуто, увеличение продолжительности хранения пробирочных растений винограда за счет естественных ингибиторов из семян винограда, добавляемых в питательную среду, патент N 2И0172, Положения, выносимые на защиту.

1. Теоретическое обоснование новых биотехнологических прие
мов технологического процесса клонального микроразмножения и оз
доровления растений:

состав питательных сред на всех этапах развития от Формирования меристематических зон, регенерации из них растений, укоренения регенераптоо до высадки с грунт;

способы оптимизации клонального микроразмножения;

способ адаптации растений к нестерильным условиям.

2. Научно-методические разработки:

по селекши бессемянных сортов винограда;

использование бессемянных родителей с последующей культурой изолированных семяпочек In vitro;

приемы повышения эмбриогенеза при самоопылении и скрскиза-нии бессемянных сортов.

Метод создания коллекции генофонда in vitro путем минима-лизацди роста растений..

по использованию технологии клонального микроразмножения и оздоровления посадочного материала винограда для создания из него сортовых маточников интенсивного типа;

по использованию в селекции стеноспермокарішчєских бессемянных сортов винограда, обеспечивающих при самоопылении и скре-іііибзнии высокий уровень змСриоГ&ііеза и шлчучыше гибридных сеянцев;

по созданию коллекций генофонда винограда in vitro с не-

— 8 -пользованием разработанных способов ингибирования роста-пробкроч-ных растений.

Практическая значимость и реализация результатов исследований работы. В результате проведенных исследований разработаны рекомендации «Клональное микроразмножение и оздоровление посадочного материала винограда для создания сортовых маточников интенсивного типа» (Москва, .1991 г.).

В виноградарских хозяйствах Дона переданы оздоровленные саженцы винограда сортов Агат донской. Алан I, Восторг, Бианка. Дружба, Гечеи заматошь и др. Производственные испытания подтвердили высокую приживаемость саженцев, хорошее развитие растений и перспективность такого пути создания сортовых маточников интенсивного типа.

Разработан метод селекции с использованием обоих бессемянных родителей и последующей культуры изолированных семяпочек In vitro. Выявлены сорта и комбинации скрещивания с высоким уровнем эмбриогенеза и образования гибридных сеянцев, доказана возможность получения высокого эмбриогенеза у сортов и форм с функционально женским типом цветка. Установлена потенциальная возможность получения гибридных сеянцев в отдельных комбинациях скрещивания даже при образовании единичных эмбрионов и растений.

Для создания коллекций генофонда in vitro разработаны способы ингибирования роста растений, обеспечивающие увеличение продолжительности между пересадками на свежую питательную среду до 4-7-8 ми и даже 12 месяцев и, тем самым способствующие продолжительному хранению винограда.

Апробация работы и публикации. Основные положения и результаты исследований были доложены и представлены на международных, республиканских и региональных научных конференциях, научно-методических совещаниях и чтениях, посвященных важнейшим проблемам биотехнологии, .селекции и производства посадочного материала винограда: международные — институт физиологии растений (Москва, 1997), Институт биохимической физики (Москва. 1995, 1998), тимирязевская сельскохозяйственная академия (Москва. 1997), Национальная академия наук Украины (Симферополь, 1993). Государственный аграрный университет республики Молдова (Кишинев. 1998) и региональные — КТО (Ленинград. 1SS8), РГУ (Ростов-на-Дону. 1991, 1992), ВНВДГиСПР (Мичуринск. 1991, 1995. 1997. 1999). РАСХН (Нем-чиновка. 1994), ДонГАУ (Персиановка, 1994). ВЮШиВ СНовочер-

— 9 -касск. 1993, 1996, 1998), Дагестанский НИИВиВ (Мамедкала, 1990).

Кроме того, во ВШИВиВ им. Я.Й. Потапенко на базе наших исследований проведено заседание секции виноградарства ВАСХНИЛ с повесткой дня «Применение биотехнологии в виноградарстве» (1991).

Материалы демонстрировались на ВДНХ (1992) и ВВЦ (1994), где били отмечены двумя золотыми и серебряной медалями.

Основные результаты исследований опубликованы в 41 научной работе и,помещены в методических рекомендациях, сборниках и центральных журналах. Получено 6 патентов на изобретения.

На опубликованные работы получен запрос из Израиля (U. Leva-novy, 1989) из Великобритании. Twyford plant Laboratories (1989). из Испании (Pedro R. Ganego Veigas. Vmversidade de Vigo, 1999),

Структура диссертации. Диссертационная работа изложена на 287 страницах машинописного текста, включает введение, б глав, выводы и рекомендации научным учреждениям и производству: список использованных литературных источников включает 230 наименование, в т.ч. 96 на иностранных языках. Экспериментальные данные приведены в 75 таблицах и 23 рисунках.

в работе участвовали: сотрудники отдела биологии клетки и биотехнологии ИФР РАН А,С. Попов, О.Н. Высоцкая, (разработка депонирования винограда In vitro при пониженной.положительной температуре>; сотрудники ВНИИ связи (г. Таганрог) Г.В- Лузгин, А.Ф. Карлов (исследование действия электромагнитного излучения в культуре тканей винограда); сотрудники лаборатории биотехнологии ВНИ-ИВиВ’Им. Я.И. Потапенко Т.В. Жукова, Н.В. Берникова. Г.В. Соколова, В.Г, Ячменева. Л. Н. Семенова, за что автор выражает им искреннюю благодарность.

Источники:

http://mcx-consult.ru/innovacionnye-biotehnologii-v-vinog
http://asprus.ru/blog/biotexnologicheskie-metody-v-sisteme-proizvodstva-ozdorovlennogo-posadochnogo-materiala-vinograda/
http://www.dslib.net/vinograd/biotehnologicheskie-metody-uskorennogo-razmnozhenija-i-ozdorovlenija-selekcii.html

Ссылка на основную публикацию

Adblock
detector