Химический состав дрожжей — Дрожжи и возбудители спиртового брожения

Спиртовое брожение

Процесс превращения микроорганизмами содержащегося в субстрате сахара в спирт и углекислый газ получил название спиртового брожения. Человечество знало и использовало этот микробиологический процесс в своей жизни значительно раньше, чем был открыт мир микроорганизмов. Упоминания о приготовлении опьяняющих напитков из винограда, плодов, ягод, зерна и пр. встречаются в древнейших летописях многих стран и народов.

В настоящее время о спиртовом брожении утвердилось представление как о сложном биохимическом процессе: сбраживание сахара живыми дрожжевыми клетками рассматривается как важнейшая часть их обмена веществ.

Возбудители спиртового брожения

Наиболее энергичными возбудителями спиртового брожения являются дрожжи Saccharomyces cerevisiae (рис. 21). Они очень широко распространены в природе и встречаются в почве, в воздухе, на фруктах, винограде, ягодах, особенно в летнее время.

Кроме дрожжей, возбуждать спиртовое брожение способны и отдельные представители плесневых грибов, дрожжеподобные организмы и некоторые бактерии. Спиртовое брожение, возбуждаемое плесневыми грибами и бактериями, протекает с иными количественными соотношениями между основными и побочными продуктами, а также с образованием таких веществ, которые не возникают при брожении, возбуждаемом дрожжами.

При недостатке кислорода спиртовое брожение наблюдается в клетках высших растений. При неправильном хранении сырья на приемной площадке консервного завода (навалом, без достаточной вентиляции и при высокой температуре) в растительных клетках наблюдается переход от нормального аэробного дыхания к анаэробному дыханию, при котором расщепление сахара протекает с образованием спирта и CO2. Свойства плодов и овощей при этом резко ухудшаются. Растительные клетки становятся дряблыми, изменяется химический состав сока. От сохраняемой массы сырья начинает исходить «спиртовой» запах. В конечном итоге значительное накопление спирта приводит к отмиранию растительных тканей. Плоды и овощи утрачивают естественный иммунитет и легко подвергаются микробиальной порче.

Химизм спиртового (алкогольного) брожения

В раскрытие химизма спиртового брожения много творческого труда было вложено нашими отечественными учеными, особенно Л. А. Ивановым, С. П. Костычевым, А. Н. Лебедевым, А. Е. Фаворским, а также зарубежными учеными — Нейбергом, Мейергофом и другими, которые с достаточной полнотой и достоверностью установили следующие положения:

1. Брожение является целиком ферментативным процессом. Роль дрожжей при спиртовом брожении заключается в том, что они вырабатывают ферменты, осуществляющие глубокое расщепление такого сложного органического вещества, каким является сахар.

2. Алкогольное брожение не является ступенчатым процессом с последовательной сменой биохимических реакций. В естественных условиях в бродящей среде одновременно совершаются превращения огромного числа молекул сахара, а следовательно, в один и тот же момент можно наблюдать все фазы процесса — параллельное протекание всех реакций. Считают, что фосфорилирование одной молекулы гексозы идет с одновременным сбраживанием второй.

3. В спиртовом брожении обязательное участие принимает фосфорная кислота, перенос которой осуществляется аденозин-трифосфорной кислотой (АТФ). Последовательный ход превращений моносахаридов по современной схеме спиртового брожения представлен в табл. 3.

Реакция восстановления уксусного альдегида в этиловый алкоголь является как бы завершающим этапом брожения.

На основе современной схемы спиртового брожения объясняется механизм и многих других видов брожения — молочнокислого, маслянокислого, глицеринового.

Наиболее благоприятной концентрацией сахара в бродящей среде является концентрация 10-20%. По мере брожения в среде повышается содержание спирта, который угнетающе действует на дрожжи. При спиртуозности 18% об. (а для некоторых рас дрожжей при 22% об.) брожение останавливается. Такая концентрация спирта для дрожжей является предельной. Большое значение для брожения имеет и температура среды. Лучше всего брожение протекает при 15-25 °С. При 35 °С наблюдается затормаживание брожения, а при 50 °С оно прекращается совсем, так как происходит инактивирование бродильных ферментов. Минимальная температура, при которой наблюдается еще действие зимазы, 4-5°С. Падение бродильной способности дрожжей с повышением температуры связано с возрастанием ядовитого действия спирта на зимазу.

Применяемая раса дрожжей оказывает большое влияние на результаты спиртового брожения. Одни дрожжи способны накапливать больше спирта, другие больше продуцируют альдегидов, глицерина, обусловливают накопление ароматических веществ, слагающих букет напитка (вина). К настоящему времени выведено большое количество дрожжевых рас (чистых культур), с самыми разнообразными свойствами, необходимыми для соответствующего производства.

Спиртовое брожение нормально протекает в средах с довольно высокой кислотностью (pH 3,5-4,5) и в анаэробных условиях. Если в бродящую среду продувать воздух, то дрожжи переходят к нормальному (аэробному) дыханию, начинают усиленно почковаться, что в конечном итоге приводит к резкому увеличению их живой массы. Это широко используют при получении прессованных дрожжей.

Техническое использование спиртового брожения

Спиртовое брожение широко используется в производственно-хозяйственной деятельности человека. В виноделии, применяя определенную расу дрожжей, оказывающую специфическое влияние на вкусовые и ароматические свойства напитка, и осуществляя полное выбраживание сусла либо приостанавливая брожение на определенном этапе, можно получить тот или иной тип вина. Удачный подбор дрожжевых рас при изготовлении виноградных вин дает возможность значительно улучшить их качество, придать им особый букет. В частности, хересные дрожжи Sacch. oviformis var. cheresiensis обусловливают появление в вине особого хересного букета, напоминающего аромат сигарного дыма. Шампанские дрожжи должны быть холодоустойчивыми, обладать способностью сбраживать сахарозу при повышенных давлениях углекислоты.

В пивоварении дрожжи влияют на качество напитка (пива) еще сильнее, так как состав пивного сусла более однообразен, чем у виноградных или плодово-ягодных соков. Чистые культуры дрожжей, используемые в пивоварении, хорошо осветляют пиво, придают ему приятный вкус и пр.

Не менее важное значение имеет спиртовое брожение в хлебопечении. Для разрыхления и подъема теста требуется быстрое и обильное образование углекислого газа. При выпечке объем углекислого газа увеличивается вдвое, что способствует получению пористого хлеба. В хлебопекарной промышленности используют также соответствующие дрожжевые расы.

При получении кисломолочных продуктов и при квашении овощей возникающие продукты спиртового брожения придают продуктам специфические вкусовые качества. При получении натуральных виноградных и плодово-ягодных соков, в которых содержание спирта не должно превышать 0,5% об., спиртовое брожение подавляют. Для этого пользуются различными технологическими приемами: охлаждением, пастеризацией, сульфитированием или введением в консервируемый сок сорбиновой кислоты.

В спиртовой промышленности сырьем для производства спирта могут служить картофель, зерновые культуры, а также отходы сахарного производства (черная патока), продукты гидролиза древесины и отходы целлюлозно-бумажной промышленности. Из продуктов гидролиза древесины получают значительные количества спирта, названного гидролизным. Небольшие количества спирта для специальных целей получают из виноградного и ягодного сырья.

Дрожжевые клетки не содержат фермента амилазы, поэтому крахмалсодержащее сырье перед сбраживанием предварительно осахаривают с помощью ячменного солода или амилазы, получаемой из некоторых грибов (Aspergillus oryzae).

Спиртовые дрожжи относятся к группе Saccharomyces сегеvisiae, раса XII. Эти дрожжи сбраживают глюкозу, фруктозу, сахарозу, мальтозу, галактозу и частично раффинозу. В сбраживаемом заторе они накапливают до 13% об. спирта.

Виды брожений. Характеристика возбудителей. Значение в промышленности

Брожением называется анаэробный процесс превращения безазотистых органических веществ (главным образом углеводов) микроорганизмами, при котором происходит накопление продуктов неполного окисления (спиртов, органических кислот, углеводов и др.) и который сопровождается выделением энергии. Биологическое значение брожения заключается в образовании энергии для осуществления жизнедеятельности микроорганизмов подобно дыханию животных и растений.

Статья по теме:   Приготовление вина способом углекислотной мацерации - Производство вина способом углекислотной мацерации

Процессы брожения широко распространены в природе. Микроорганизмы, вызывающие брожение, совершают грандиозную биохимическую работу. С энергетической точки зрения процессы брожения крайне неэкономичны. Но возможно, продукты брожения являются, кроме того, орудиями борьбы между разными видами микробов за место своего обитания, так как микробы — возбудители брожения могут выдерживать большие концентрации продуктов брожения, чем другие виды.

Различают следующие виды брожения по характеру накапливающихся при брожении главных продуктов: молочнокислое, пропионовокислое, масляно-кислое, ацетоноэтиловое и ацетонобутиловое, анаэробное разложение клетчатки, которые вызываются различными бактериями, и спиртовое брожение, вызываемое главным образом дрожжами.

Аэробные процессы окисления вызываются бактериями и грибами Эти организмы имеют полный набор дыхательных ферментов, благодаря чему водород окисляемого вещества передается молекулярному кислороду, который всегда имеется в среде. Поэтому в энергетическом отношении эти процессы очень эффективны. К процессам окисления относятся: окисление этилового спирта в уксусную кислоту, окисление жиров, клетчатки, окисление углеводов плесневыми грибами, окисление углеводородов, молекулярного водорода и др.

Спиртовое брожение . Спиртовым брожением называется превращение микроорганизмами углеводов в этиловый спирт и углекислоту. Химическая схема спиртового брожения без учета промежуточных этапов выражается уравнением С6Н12О6 = 2СН3СН2ОН + 2С02 + 27 ккал. Это брожение вызывается дрожжами, а также мукоровыми грибами.

Дрожжи, возбудители этого брожения, — факультативные анаэробы. Как источник азота они используют аминокислоты, пептон, а также аммонийные соли. При развитии в бескислородной среде они получают энергию за счет спиртового брожения, а в аэробных условиях — частично за счет окисления питательных веществ до углекислоты и воды. Это говорит о том, что дрожжевые клетки содержат очень сложный комплекс ферментов. При широком доступе кислорода у дрожжей помимо дыхания параллельно идет и процесс брожения — настолько ферменты дрожжей специализированы в направлении брожения.

Дрожжи широко распространены в природе. Они всегда встречаются на поверхности фруктов и ягод, на листьях. С опадающими фруктами и ягодами дрожжи попадают в почву, где перезимовывают, а затем опять попадают на растения вместе с пылью, а также заносятся насекомыми, птицами. Это гак называемые дикие дрожжи.

Спиртовое брожение широко используется в промышленности: в виноделии, пивоварении, винокурении и хлебопечении. В этих производствах употребляют культурные дрожжи, отличающиеся от диких дрожжей высокой производительностью.


Таблица 5. Схема диссимиляции глюкозы по Эмбдену-Мейергофу

Дрожжи имеют фермент карбоксилазу, под влиянием которого пировиноградная кислота распадается на углекислый газ и уксусный альдегид:

СН3СОСООН = СН3СНО + С02, из уксусного альдегида образуется спирт за счет восстановления активным водородом:

Современное производство спирта исходит из биологии дрожжей на основе микробиологической техники. Поэтому широко применяется стерилизация и микробиологический контроль. Если в затор (субстрат, подготовленный для брожения) попадут в большом числе бактерии, то они могут испортить все течение брожения.

Винный спирт в настоящее время готовится из различного сырья.

Так, брожению подвергаются следующие вещества:

1. Вещества, содержащие крахмал (рожь, ячмень, кукуруза, картофель) или сахара (свекла, сахарная патока). Дрожжи не имеют фермента для разложения крахмала, почему крахмал предварительно осахаривают солодом, содержащим фермент амилазу. Осахаренный затор подкисляют прибавлением молочнокислых бактерий, которые подавляют рост гнилостных, маслянокислых и других вредных бактерий.

По достижении достаточной кислотности молочнокислые бактерии убиваются нагреванием. Брожение ведется на чистых культурах дрожжей. Дрожжи при помощи фермента инвертазы переводят сахарозу в 6-моносахара, а последние сбраживаются в этиловый спирт (6-10°). По окончании брожения спирт отгоняется от барды и очищается от сивушных масел.

2. Гидролизаты образуются при обработке отходов древесины соляной и серной кислотами. В результате происходит осахаривание клетчатки древесины. К полученному суслу прибавляют азотнокислые и фосфорнокислые соли и винные дрожжи, уже приспособленные к брожению в этих условиях. Из одного кубического метра древесины получается 158 л винного спирта.

3. Сульфитные щелоки являются отходами производства целлюлозы. Из тонны щелоков получается около 5-10 л 96°-ного спирта.

4. В настоящее время этиловый спирт получают на крупных заводах синтетическим путем методом косвенной или прямой гидратации газа этилена. Этот чисто химический метод получения винного спирта из непищевого сырья очень экономичен.

Молочнокислое брожение.

Типичное молочнокислое брожение — процесс расщепления углеводов (лактозы, мальтозы, сахарозы, глюкозы и др.) с образованием молочной кислоты без побочных продуктов по уравнению С6Н12О6 = 2С3Н6О3 + 18 ккал.

В северных широтах возбудителем этого брожения обычно является молочный стрептококк, вызывающий естественное скисание молока. Оптимальная температура для него 30-35°. Вторая группа возбудителей типичного брожения — палочковидные бактерии. Из них болгарская палочка обычно вызывает естественное скисание молока в южных районах. Оптимальная температура для жизнедеятельности около 40°, условный анаэроб. В эту группу входит Thermobacterium cereale. Она приспособлена к усвоению углеводов растительного происхождения — мальтозы и др. Молочный сахар она не разлагает, используется при заводском получении молочной кислоты.

Молочнокислые бактерии требовательны к азоту (они усваивают его только из аминокислот) и к наличию витаминов группы В. Больше всего кислоты образует болгарская палочка (3,2%), затем Thermobacterium cereale (2,2%), молочный стрептококк (0,8-1%). В присутствии нейтрализаторов кислоты накопление молочной кислоты сильно увеличивается.

Химизм молочнокислого брожения. Первые этапы молочнокислого брожения идут, как и при спиртовом брожении. Но гомоферментативные молочнокислые бактерии не имеют фермента карбоксилазы, поэтому С. П. Костычев полагал, что пировиноградная кислота восстанавливается до молочной:

Но возможно, молочная кислота образуется из фосфоглицеринового альдегида путем одновременного окисления и восстановления, так как из пировиноградной кислоты при воздействии на нее ферментов из Thermobacterium cereale была получена не молочная, а уксусная кислота.

Бактерии нетипичного (гетероферментативного) молочнокислого брожения имеют фермент карбоксилазу, поэтому производят брожение с образованием молочной кислоты, уксусной кислоты, этилового спирта и газообразных продуктов — углекислоты. В эту группу входит Bact. brassicae, участвующая в квашении капусты. При засолке огурцов молочнокислое брожение вызывает Bact. cucumeris.

Широко распространена на разных растительных продуктах и вызывает скисание их Lactobacterium plantarum. Перечисленные бактерии широко распространены в природе — в почве, на различных растительных остатках. Вызываемое ими брожение имеет значение в минерализации растительных остатков в почве. Некоторые виды бактерий этой группы сбраживают не только гексозы, но и пентозы, которые имеются в растительных остатках в большом количестве в виде пентозанов.

Молочнокислое брожение вызывает кишечная палочка и близкая к ней Bact. lactis aerogenes. Это мелкие палочки, грамотрицательные, факультативные анаэробы. Они имеют большой набор различных ферментов. При брожении образуется: молочной кислоты около 40% от сброженного сахара, янтарной кислоты 20%, спирта и уксусной кислоты по 10% и газов 20%. Белки они разлагают по типу гнилостного распада. Присутствие этих бактерий в молочных продуктах говорит о их фекальном загрязнении.

Сметану получают прибавляя к сливкам чистую культуру молочнокислых бактерий Streptococcus cremoris.

Ацидофилин получают заквашиванием пастеризованного молока ацидофильной палочкой, выделенной из кишечника грудных детей. Эта палочка хорошо приживается в кишечнике, тогда как болгарская палочка, рекомендованная Мечниковым, в кишечнике приживается плохо.

Квашение овощей при быстром росте овощного хозяйства приобретает все большее значение. Овощи плотно закладывают в чаны, чтобы создать анаэробные условия. Благодаря прибавлению соли происходит плазмолиз и затем гибель клеток заквашиваемых овощей — капусты, огурцов, помидоров и пр. Они быстрее отдают в рассол сок, в частности сахара. Все это благоприятствует развитию молочнокислых бактерий и накоплению молочной кислоты. Дрожжи могут продуцировать спирт и эфиры, которые придают продуктам специфический аромат и вкус.

Статья по теме:   Тквапа рачули - сорт винограда

Молочнокислые бактерии и дрожжи играют существенную роль в приготовлении черного кислого хлеба. Молочнокислые бактерии хлебной закваски придают кислый вкус хлебу, препятствуют развитию маслянокислых и гнилостных микроорганизмов, а спиртовое брожение «поднимает» тесто.

Пропионовокислое брожение вызывается особыми пропионовокислыми бактериями. Они строгие анаэробы, грамположительны. Источником азота для них служат белковые вещества. Энергию получают при разложении Сахаров и солей молочной кислоты. Конечными продуктами брожения являются пропионовая и уксусная кислоты, а также СО2 и Н2О.

Они широко представлены в молочных продуктах, в почве, в кале животных и пр. Пропионовокислое брожение, а также и молочнокислое используется для получения сыров в молочно-сыродельных производствах. Сырная масса получается путем обработки молока сычужной закваской. Далее молочная сыворотка удаляется и сырная масса прессуется в котле.

В это время происходит усиленное молочнокислое брожение. Когда молочный сахар бывает весь использован, молочнокислые микробы прекращают свое размножение и постепенно отмирают. Теперь молочнокислое брожение сменяется пропионовокислым, при котором соли молочной кислоты превращаются в пропионовую и уксусную кислоты и сыр приобретает специфический вкус. Углекислота образует в сыре «глазки». Производство сыра продолжается 2-3 месяца минимум, лучшие сорта выдерживаются почти до года.

Масляно-кислое брожение. Биохимическая природа масляно-кислого брожения была установлена Луи Пастером (1861). Он доказал, что масляно-кислое брожение вызывается масляно-кислыми бактериями. При этом Пастер открыл новый тип окисления — анаэробный.

Масляно-кислые бактерии довольно крупного размера (3-12 мк). Имеют жгутики. Образуют споры, поперечник спор обычно больше поперечника самой палочки, и палочки со спорой приобретают вид веретена или барабанной палочки (булавки). Они строгие анаэробы. В качестве источника углерода и энергетического материала они используют углеводы, спирты, органические кислоты; в качестве источника азота — самые различные азотные соединения: пептон, аминокислоты, аммиачные соли, а некоторые из них даже азот атмосферы. Типичное брожение идет с образованием масляной кислоты, углекислоты и водорода по уравнению:

Возбудители масляно-кислого брожения чрезвычайно широко распространены в природе. До 90% почвенных образцов содержат эти бактерии. Они всегда находятся в водоемах, илах, навозе, молоке, сыре и пр. Масляно-кислое брожение наблюдается всюду, где происходит разложение органических остатков в анаэробных условиях. Оно играет большую роль в круговороте углерода.

Масляная кислота образуется также при бактериальном разложении белковых веществ. При дезаминировании аминокислот образуются аммиак и кислоты: масляная, уксусная, пропионовая и др., но в значительно меньших количествах, чем при брожении. В еще меньших количествах масляная кислота встречается среди продуктов жизнедеятельности организмов при расщеплении бактериями самых разнообразных органических веществ.

Масляная кислота, выделяемая при брожении, хорошо усваивается рядом других бактериальных видов.

Брожение пектиновых веществ. Растительные ткани, особенно кора растений и мякоть плодов, содержат в значительном количестве межклеточное вещество, называемое пектином (pectis — студень), цементирующее клетки в тканях. В почве стебли растений разлагаются различными микроорганизмами, причем в первую очередь разлагается паренхима коры, пропитанная пектином. Этот процесс брожения пектинов также является важным в круговороте углерода. Он способствует ускорению минерализации растительных тканей. После разрушения межклеточных веществ целлюлозные стенки отдельных клеток легче подвергаются действию целлюлозоразлагающих микробов.

На пектиновом брожении основана первичная обработка волокнистых растений — льна, конопли, джута, кенафа и др. — для отделения волокна от костры. Для этого производят мочку льна и других волокнистых растений в естественных стоячих водоемах, где в брожении принимают участие естественно живущие в них пектиноразлагающие анаэробы. Лучшие результаты дает искусственная мочка в заводских условиях с применением чистых культур бактерий.

Анаэробное разложение клетчатки. Огромное значение для круговорота углерода в природе имеет разложение клетчатки (целлюлозы). Половина всего углерода, находящегося на поверхности Земли, содержится в клетчатке. Клетчатка и лигнин совсем не усваиваются животными. А ежегодный прирост ее в составе растений огромный. Она составляет 50% сухого веса прироста, поэтому накапливалась бы в больших количествах на Земле, нарушая круговорот углерода. Клетчатка — очень стойкое органическое соединение и может быть разрушена только при действии очень сильных химических соединений.

Но в природе она легко разрушается и вовлекается в круговорот веществ под воздействием широко распространенных целлюлозоразлагающих микробов, впервые описанных В. Л. Омелянским в 1899 г. Он установил, что анаэробное разложение клетчатки вызывают Вас. cellulosae hydrogenicus и Вас. cellulosae methanicus. Обе эти палочки морфологически похожи друг на друга, анаэробы, образуют споры, содержат ферменты целлюлозу и целлобиазу. Конечные продукты обеих палочек — масляная и уксусная кислоты, углекислота, но первая палочка еще образует водород, а вторая метан. Некоторые авторы обе эти палочки относят к одному виду Вас. Omelianskii, полагая, что метан является вторичным продуктом водородного брожения клетчатки.

Дрожжи и возбудители спиртового брожения

Содержание материала

Часть третья
ДРОЖЖИ — ВОЗБУДИТЕЛИ СПИРТОВОГО БРОЖЕНИЯ

Глава 5. ЦИТОЛОГИЯ, СИСТЕМАТИКА И ЭКОЛОГИЯ ВИННЫХ ДРОЖЖЕЙ

В данной третьей части будут рассмотрены одноклеточные организмы, дрожжи и бактерии — возбудители брожений. Но сначала необходимо дать несколько определений для тех читателей, которые недостаточно знакомы с терминологией микробиологов.
Цитологией называют науку о клетке, ее морфологии, структуре, свойствах и функциях.
Для исследования микроорганизмов необходимо знать их положение в классификации. Систематика занимается такой классификацией и включает описание видов. Таксономия является наукой, которая исследует законы классификации.
Микроорганизмы подразделяют по сходству их морфологических, цитологических и физиологических характеристик. Их делят на классы, подклассы, порядки, семейства, роды, виды; расами называют различные штаммы дрожжей в рамках одного вида.
Чтобы лучше уяснить место, которое занимают микроорганизмы в живом мире, нужно иметь в виду, что известны три группы живых существ: две первых представлены растениями и животными, многоклеточными организмами с сильно развитой дифференциацией тканей; третью образуют простейшие организмы, одноклеточные или многоклеточные, но без тканевой дифференциации; они включают водоросли, простейшие одноклеточные организмы, грибы и бактерии.
Среди простейших организмов выделяют две подгруппы, различающиеся элементарной структурой их клетки: простейшие прокариоты, к которым относятся бактерии, и простейшие аукариоты, включающие грибы, и в частности дрожжи.
Грибы делятся на многие классы, среди которых находятся аскомицеты, размножающиеся половым путем и образующие споры (аскоспоры) внутри клетки с уплотненной оболочкой, называемой аском. Аскомицеты включают много семейств, среди которых находятся Saccharomycetaceae (см. табл. 5.2). К этому семейству принадлежат дрожжах опиртового брожения.
Но не все дрожжи образуют аски и, следовательно, не все являются аскомицетами; такие дрожжи принадлежат к семейству Cryptococcaceae (см. табл. 5.1). Другие дрожжи относятся к классу несовершенных грибов (Fungi imperfeeti), с бесполым размножением; дрожжи находят также в классе базидиомицетов.
Таким образом, в действительности термин «дрожжи» не является в полном смысле слова ботаническим; он обозначает не связанную с другими группу микроорганизмов, рассеянную в трех семействах грибов. Однако удобство такого термина, некоторое единство структуры, сходство формы и внешнего вида придают этой группе, несмотря на отдельные различия в физиологических свойствах, определенную монолитность.
Более детальные сведения по цитологии и систематике можно найти в работах по общей микробиологии (Ламбен и Жерман, 1961; Стание и сотрудники, 1966; Сенец, 1968; Шампаньят и сотрудники, 1969) и в недавно опубликованных монографиях о дрожжах (Роз и Харрисон, 1969— 1971). Имеется лишь небольшое количество монографий по микробиологии вина; заслуживают упоминания труды таких авторов, как Шандерль (1959), Америн и Кушке (1968), Кастелли (1969).

Статья по теме:   О морозостойкости сортов и возможности расширения площади неукрывной культуры винограда - Устойчивость винограда к морозам и заморозкам

Цитология дрожжей

В целом структура дрожжевой клетки мало отличается от структуры клеток растения. Чтобы увидеть под микроскопом структуру молодой дрожжевой клетки, обнаружить различные органоиды, ее необходимо покрасить. В более старых клетках или в клетках, содержащих аскоспоры, можно непосредственно при микроскопировании различить некоторые детали внутреннего строения. Наблюдение с помощью электронного микроскопа позволило осуществить детальное исследование клеток различных видов дрожжей. Как и любой организм подгруппы аукариотов, дрожжевая клетка включает клеточную оболочку, цитоплазму и ядро (рис. 5.1).

Клеточная оболочка

Клеточная оболочка включает клеточную стенку, и дитоплазматическую мембрану. Клеточная стенка дрожжей относительно толстая и жесткая. В ее состав входят полисахариды — маннан и глюкан в примерно равном соотношении. У некоторых дрожжей маннан отсутствует. Кроме того, клеточная стенка содержит белки, липиды, фосфаты, глюкозамин и у большей части видов хитин. Внешний слой стенки образуется в первую очередь маннаном, глюкан же входит в состав промежуточного слоя, богатого белками.
Белки стенок состоят из обычных аминокислот, с сильной пропорцией глутаминовой и аспарагиновой кислот; они также богаты серусодержащими аминокислотами и находятся в виде комплексных соединений с полисахаридами.

рис.5.1. Схема строения клетки — Saccharomyces ellipsoideus, no Роуз и Харрисон, 1969:
1 — ядро; 2 — ядрышко; 3 — центриоль; 4 — ядерная оболочка; 5 — митохондрии; 6 — липидные зерна; 7 — цитоплазматическая мембрана; 8 — вакуоль; 9 — метахроматическая корпускула; 10 — клеточная стенка: 11рубец от почкования; 12 — цитоплазма.

На внутренней стороне стенки клетки локализованы ферменты: инвертаза, фосфатаза, пептидаза и другие гидролазы.
Оболочка дрожжевой клетки играет роль защитного покрытия, так как она устойчива против механического воздействия. Она придает клетке специфическую форму.
Подсчитано, что поверхность клеток, содержащихся в 1 л бродящего сусла, равна 10 м2, хотя по внешнему виду клеточная оболочка выглядит гладкой, фактически она представляет собой тонкую решетку, активная поверхность которой составляет еще большую площадь. Этим объясняется быстрота обмена веществ у дрожжей.
В то же время оболочка имеет относительно мелкие поры. Коллоиды с молекулярной массой более 4500 через них не проходят. В результате этого дрожжи не могут использовать белки среды непосредственно. Клеточную оболочку следует рассматривать как некий фильтр, пропускающий только макромолекулы. Роль ферментов стенки заключается в том, чтобы обеспечивать проникновение гидролизуемых веществ.
С помощью электронного микроскопа наблюдали на поверхности оболочки рубцы, образующиеся при последовательных почкованиях.
Цитоплазматическая мембрана сама состоит из трех исключительно тонких слоев, образованных липидами, белками, полисахаридами.
Роль мембраны сводится к контролю движения веществ, содержащихся во внешней среде, внутрь клетки и обратно. С одной стороны, мембрана пропускает питательные вещества к местам их ассимиляции: ноны, сахара, аминокислоты, витамины и другие, с другой — она контролирует выделение в среду продуктов метаболизма, таких, как этанол и другие вещества.
Этот непрерывный обмен между дрожжами и средой происходит посредством систем транспортеров. Они придают цитоплазматической мембране свойства высокоселективного фильтра.

Цитоплазма и ее органоиды

Обычно цитоплазма занимает большую часть объема клетки и содержит некоторое число органоидов, растворимые ферменты, в частности те, которые участвуют в процессе гликолиза.
В ней различают включения (гранулы гликогена) и органоиды, главными из которых являются рибосомы, вакуоли, митохондрии.
Рибосомы дрожжевой клетки наблюдаются пол электронным микроскопом рассеянными в цитоплазме. Химически они состоят из примерно одинаковых частей белков и нуклеиновых кислот. Полагают, что рибосомы являются местом синтеза белков.

Гликоген — полисахарид, довольно похожий на крахмал растении, находится почти во всех дрожжах; в некоторых условиях он может составлять до 40% их сухой массы. В начале брожения гликоген в клетках появляется в виде небольших скоплений с правильными очертаниями, разбросанных в цитоплазме, которые в дальнейшем быстро сливаются в большую массу, отталкивающую вакуоль и ядро к периферии. Гликоген легко обнаружить: при окрашивании клеток красителем с иодом он становится коричневым. К концу брожения он постепенно исчезает. Когда дрожжи спорулируют, гликоген накапливается в асках и используется аскоспорами во время их прорастания. Он является резервным веществом.

Другие часто встречающиеся запасные вещества — липиды — находятся в плазме дрожжей в виде гранул. Эти образования, преломляющие свет, очень хорошо различимы под микроскопом у пленчатых дрожжей, развивающихся на поверхности вин.

Вакуоли — это органоиды клетки, часто неправильной формы, ограниченные одной мембраной. В цитоплазме молодых клеток дрожжей содержится одна вакуоль, если они имеют сферическую или эллиптическую форму, и две вакуоли, расположенные соответственно на каждом из полюсов и связанных плотным цитоплазменным мостом, в котором находится ядро, если клетки удлиненные. Содержащие жидкость с кислой реакцией вакуоли отделены полупроницаемой мембраной от цитоплазмы, которая нейтральна или обладает слабой щелочностью. Вакуоли играют большую роль в явлениях осмоса, содержат соли, кислоты, сахара, белки и другие вещества.
Во время фазы роста вакуолярный аппарат не имеет видимых элементов структуры. В старых клетках вакуоль имеет сферические образования, состоящие из полиметафосфатов, которые за их легкую окрашиваемость назвали «метахроматическими корпускулами», а также полифосфатов, называемых валюгином.

В вакуолях находят также липиды и много гидролитических ферментов: протеазы, рибонуклеазы, эстеразы и др. Локализация этих гидролаз в вакуолях наводит на мысль, что эти органоиды представляют собой наиболее подходящее место для реализации реакции гидролиза. Вакуоли также являются местом аккумуляции пуринов, некоторых аминокислот, ионов калия и других веществ, которые здесь накапливаются до начала метаболизма.
Митохондрия встречается в различных формах: сферической, в виде палочек, нитей. Дрожжевая клетка содержит около дюжины митохондрий, которые имеют тенденцию располагаться вблизи ядра. Богатые липидами, фосфолипидами, эргостернном, митохондрии содержат нуклеиновые кислоты, отличные от тех, которые находятся в ядре и в рибосомах. Они содержат дыхательные ферменты, цитохромы, флавины, железо, медь и являются местом процесса дыхания; размеры их уменьшаются при дыхательной недостаточности, когда дрожжи культивируют в анаэробиозе или в среде, лишенной стеринов.

Хотя ядро и имеет диаметр около 1 мкм, его трудно наблюдать при микроскопировании в живых дрожжах, развивающихся в жидкой среде; оно легче обнаруживается при фазово-контрольной микроскопии дрожжей, размножающихся в аэробных условиях. У почкующихся клеток ядро обычно наблюдается между почкой и вакуолью; сразу же после отделения почки оно перемещается в противоположную сторону материнской клетки.
Ядро окружено оболочкой; вокруг оболочки можно наблюдать в электронный микроскоп поры, которые исчезают и вновь образуются в разных точках мембраны. Во время почкования оболочка ядра не разрывается; ядро удлиняется, часть его проникает в почку.

Ядро состоит из двух ясно различимых частей; одна оптически плотная имеет форму полусферы и называется нуклеусом, над ней находится другая, более прозрачная часть в виде колпака нуклеоллазма.
Ядро содержит нуклеиновые кислоты, в частности рибонуклеиновую кислоту. Оно делится митотически, как все ядра эукариотных клеток.

Хромосомы дрожжей из-за малых размеров трудно обнаружить, и относительно их числа существуют противоречивые мнения. Для Saccharomces, elJipsoideus число хромосом, по-видимому, составляет не менее 13.

Источники:

http://www.spec-kniga.ru/tehnohimicheski-kontrol/osnovy-mikrobiologicheskogo-kontrolya-konservnogo-proizvodstva/vazhnejshie-biohimicheskie-processy-vozbuzhdaemye-mikroorganizmami-spirtovoe-brozhenie.html
http://studopedia.ru/10_124229_vidi-brozheniy-harakteristika-vozbuditeley-znachenie-v-promishlennosti.html
http://vinograd.info/info/teoriya-i-praktika-vinodeliya/drozhzhi-i-vozbuditeli-spirtovogo-brozheniya.html

Ссылка на основную публикацию

Adblock
detector